przypuścimy — co nasuwa się w sposób naturalny — że nie ulega ono wpływowi cząsteczek znajdujących się w dostrzegalnej odległości.
Zginamy pręt; przybierze on kształt bardzo skomplikowany, którego bezpośrednie zbadanie byłoby niemożliwe; będziemy przecież mogli doń przystąpić, jeśli zauważymy, że wygięcie pręta jest wypadkową odkształceń jego elementów bardzo małych, i że odkształcenie każdego z tych elementów zależy jedynie od sił bezpośrednio doń przyłożonych, wcale zaś nie zależy od sił, które mogą działać na inne elementy.
We wszystkich tych przykładach, które moglibyśmy mnożyć bez trudności, przypuszcza się, że niema działania na odległość lub przynajmniej na wielką odległość. Jest to hypoteza; niezawsze jest ona prawdziwa, dowodzi tego prawo ciążenia; należy więc poddawać ją sprawdzeniu; jeśli doświadczenie potwierdzi ją, bodaj w przybliżeniu, będzie ona cenna, albowiem pozwoli nam na budowanie fizyki matematycznej, przynajmniej drogą przybliżeń kolejnych.
Jeśli natomiast nie ostoi się wobec prób, trzeba szukać innych analogicznych dróg, gdyż istnieją inne jeszcze środki osiągnięcia zjawisk elementarnych. Jeśli kilka ciał działa jednocześnie, zdarzyć się może, że działania ich są niezależne i dodają się poprostu jedne do drugich bądź na podobieństwo wektorów, bądź na podobieństwo wielkości skalarnych. Zjawiskiem elementarnym jest natenczas działanie jednego z tych ciał, wziętego w odosobnieniu od innych. Lub też mamy do czynienia z małemi ruchami, albo, mówiąc ogólniej, z małemi zmianami ulegającemi znanemu prawu superpozycyi. Zaobserwowany ruch rozłoży się wówczas na ruchy proste, np. dźwięk na składowe proste harmoniczne, światło białe na swe monochromatyczne składniki.
Skoro postanowiono już, w którą stronę zwrócić swe poszukiwania zjawiska elementarnego, to jakiemi środkami dopnie się go?
Przedewszystkim zdarzy się częstokroć, że aby je odga-
Strona:H. Poincaré-Nauka i Hypoteza.djvu/133
Ta strona została uwierzytelniona.