dnąć albo raczej aby odgadnąć zeń to, co nam będzie pożyteczne, nie będziemy musieli wniknąć w jego mechanizm; prawo wielkich liczb wystarczy. Powróćmy do przykładu rozchodzenia się ciepła; każda cząsteczka promieniuje ku każdej sąsiedniej cząsteczce; według jakiego prawa odbywa się to promieniowanie, nie mamy potrzeby wiedzieć; gdybyśmy zrobili co do tego jakieś przypuszczenie, byłaby to hypoteza obojętna a zatym bezużyteczna i niesprawdzalna. Bo w rzeczy samej działanie przeciętnych oraz symetrye środowiska sprawia, że wszystkie różnice wyrównywają się i jakakolwiek była owa hypoteza, rezultat będzie zawsze ten sam.
Ta sama okoliczność zachodzi w teoryi sprężystości, w teoryi włoskowatości; cząsteczki sąsiadujące ze sobą przyciągają się lub odpychają; nie mamy potrzeby wiedzieć, według jakiego prawa; wystarczy, abyśmy wiedzieli, że przyciąganie to jest uczuwalne jedynie na małe odległości, że cząsteczki są bardzo liczne, że środowisko jest symetryczne — a pozostanie nam jedynie zastosowanie prawa wielkich liczb.
I tutaj prostota zjawiska elementarnego ukrywała się pod komplikacyą dostrzegalnego zjawiska wypadkowego; ale z kolei i ta prostota była tylko pozorna i maskowała bardzo złożony mechanizm.
Najlepszym środkiem dotarcia do zjawiska elementarnego byłoby oczywiście doświadczenie. Należałoby za pomocą odpowiednich sposobów eksperymentalnych rozłożyć zawiły snop, dany nam bezpośrednio przez przyrodę, i starannie zbadać jego możliwie oczyszczone elementy; rozłożymy np. przyrodzone światło białe na światła monochromatyczne za pomocą pryzmatu, a na światła spolaryzowane zapomocą polaryzatora.
Na nieszczęście nie jest to ani zawsze możliwe ani zawsze wystarczające, i nieraz wypada umysłowi wyprzedzać doświadczenie. Jeden tylko przytoczę na to przykład, który zawsze żywo mnie uderzał:
Rozłożywszy światło białe, możemy wyodrębnić małą
Strona:H. Poincaré-Nauka i Hypoteza.djvu/134
Ta strona została uwierzytelniona.