szachista będzie mógł przygotować sobie zawsze tylko pewną skończoną liczbę posunięć; jeżeli zwróci on swe zdolności do arytmetyki, nie zdoła on objąć ogólnych jej prawd zapomocą jednej bezpośredniej intuicyi; chcąc dojść do najmniejszego bodaj twierdzenia, nie będzie mógł obejść się bez pomocy rozumowania przez rekurencyę, albowiem jest to narzędzie pozwalające na przejście od skończoności do nieskończoności.
Narzędzie to jest zawsze pożyteczne, ponieważ dając nam możność przebycia jednym skokiem dowolnej liczby etapów, zwalnia nas ono od sprawdzań długich, mozolnych i monotonnych, które rychło stałyby się praktycznie niewykonalnemi. Ale staje się ono niezbędnym, skoro tylko mamy na widoku twierdzenie ogólne, do którego sprawdzanie analityczne bezustannie by nas przybliżało, nie pozwalając nam wszakże nigdy doń dotrzeć.
Zdawać by się mogło, że ten dział arytmetyki odległy jest bardzo od analizy nieskończonostkowej; a przecież, jak widzieliśmy powyżej, idea nieskończoności matematycznej odgrywa w nim już rolę przemożną, i bez niej nie byłoby nauki, bo nie byłoby nic ogólnego.
Sądowi, na którym oparte jest rozumowanie przez rekurencyę, można nadać inne postacie; można np. powiedzieć, że w nieskończonym zbiorze liczb całkowitych różnych istnieje zawsze jedna, która jest mniejsza od wszystkich innych.
Możnaby przejść łatwo od jednego sformułowania tego sądu do drugiego, łudząc się, że dowiodło się prawowitości rozumowania przez rekurencyę. Ale zawsze gdzieś będziemy musieli się zatrzymać, zawsze dojdziemy do jakiegoś nie dającego się dowieść pewnika, który nie będzie w gruncie rzeczy niczym innym, jak właśnie twierdzeniem, o którego dowiedzenie chodzi, w innym tylko wysłowieniu.
Niepodobna więc uchylić się od wniosku, że prawidło