Strona:H. Poincaré-Nauka i Hypoteza.djvu/39

Ta strona została uwierzytelniona.

należy wszakże rozróżnić dwa rodzaje: niektóre, jak np. ten oto: »dwie ilości równe trzeciej, są wzajem równe«, nie są twierdzeniami geometrycznemi lecz twierdzeniami z dziedziny analizy. Uważam je za sądy analityczne a priori i nie będę się niemi zajmował.

Muszę natomiast zatrzymać się nad innemi pewnikami, właściwemi samej geometryi. Większość wykładów tej nauki formułuje w sposób jawny trzy takie pewniki:

1° Przez dwa punkty może przechodzić jedna tylko prosta;

2° Linia prosta jest najkrótszą drogą od jednego punktu do drugiego;

3° Przez dany punkt można przeprowadzić jedną tylko równoległą do danej prostej.

Jakkolwiek drugie z powyższych twierdzeń podawane bywa zwykle jako pewnik, a więc jako niewymagające dowodu, w rzeczywistości możnaby je wyprowadzić z dwu pozostałych oraz z innych liczniejszych jeszcze pewników, które przyjmuje się milcząco w sposób utajony, jak to w dalszym biegu naszych rozważań wykażemy.

Przez długi czas starano się napróżno o przeprowadzenie dowodu trzeciego pewnika, znanego pod nazwą postulatu Euklidesa. Trudno zaprawdę wyobrazić sobie, ile zużyto wysiłków dla dopięcia tego chimerycznego celu. Wreszcie na początku ubiegłego stulecia i prawie jednocześnie dwaj uczeni: rosyanin Łobaczewski i węgier Bolyai okazali w sposób niezbity, że dowód ten jest niemożliwy: uwolnili nas oni prawie zupełnie od wynalazców geometryi bez postulatu; od owego czasu (paryska) Akademia Umiejętności nie otrzymuje rocznie więcej nad dwa lub trzy nowe dowody.

Kwestya ta przecież nie została wyczerpana; rychło posunęła się ona o wielki krok naprzód przez ogłoszenie słynnej rozprawy Riemanna: Ueber die Hypothesen, welche der Geometrie zu Grunde liegen. Rozprawa ta natchnęła większość prac nowszych, o których mówić będziemy w dalszym