Strona:H. Poincaré-Nauka i Hypoteza.djvu/51

Ta strona została uwierzytelniona.

to sposób postulaty mogą pozostawać ściśle prawdziwemi nawet wówczas, gdy prawa doświadczalne, które wpłynęły na ich wybór, są tylko przybliżone.
Innemi słowy, pewniki geometryi (nie mówimy o pewnikach arytmetyki) są to określenia zamaskowane.
Cóż wobec tego należy myśleć o pytaniu: Czy geometrya euklidesowa jest prawdziwa?
Niema ono sensu.
Równie dobrze możnaby pytać, czy system metryczny jest prawdziwy a dawne miary fałszywe; czy spółrzędne kartezyańskie są prawdziwe a spółrzędne biegunowe fałszywe. Jedna geometrya nie może być prawdziwsza niż inna; może tylko być dogodniejsza.
Otóż geometrya euklidesowa jest i pozostanie najdogodniejszą:
1° Dlatego, że jest najprostsza; a jest nią nietylko naskutek naszych nawyknień umysłowych czy też jakiejś bezpośredniej intuicyi przestrzeni euklidesowej; jest ona najprostsza sama przez się, podobnie jak wielomian pierwszego stopnia jest prostszy od wielomianu drugiego stopnia; wzory trygonometryi kulistej są zawilsze niż — prostolinijnej, i takimi też wydawałyby się analitykowi, który nie znałby ich znaczenia geometrycznego.
2° Dlatego, że przystosowana jest dość dobrze do własności brył stałych przyrodzonych, brył, do których zbliżają się członki naszego ciała i nasze oko i z których sporządzamy nasze przyrządy miernicze.



Rozdział Czwarty.
Przestrzeń a Geometrya.


Rozpocznijmy od małego paradoksu.
Istoty, obdarzone takim samym umysłem, jak my, oraz takimi samymi zmysłami, a nie posiadające żadnego uprzedniego