4° Jest jednorodna, to znaczy, że wszystkie jej punkty są toż same między sobą;
5° Jest izotropową, to znaczy, że wszystkie proste przechodzące przez jeden i ten sam punkt, są tożsame między sobą.
Porównajmy ją teraz do ramy naszych wyobrażeń i naszych czuć, którą moglibyśmy nazwać przestrzenią wyobrażeniową (l’espace représentatif).
Przestrzeń wzrokowa. — Rozważmy nasamprzód wrażenie czysto wzrokowe, pochodzące od obrazu tworzącego się na siatkówce.
Sumaryczna analiza powiada nam, że obraz ten jest ciągły, lecz posiada tylko dwa wymiary, i tym już różni się czysta przestrzeń wzrokowa od przestrzeni geometrycznej.
Następnie obraz ów zawarty jest w ograniczonej ramie.
Wreszcie zachodzi jedna jeszcze niemniej ważna różnica: ta czysta przestrzeń wzrokowa nie jest jednorodna. Nie wszystkie punkty siatkówki, niezależnie od tego, jakie się na niej tworzą obrazy, odgrywają jednakową rolę. Żółtej plamy nie można żadną miarą uważać za tożsamą z punktem, położonym na brzegu siatkówki. Nietylko bowiem jeden i ten sam przedmiot tworzy w tym miejscu o wiele żywszy obraz, lecz naogół w każdej ograniczonej ramie punkt, zajmujący jej środek, nie będzie tożsamy z punktem, leżącym w pobliżu jednego z jej brzegów.
Głębsza analiza wykazałaby nam bez wątpienia, że i ciągłość przestrzeni wzrokowej i dwa jej wymiary są również tylko złudzeniem; odsunęłaby ją przeto jeszcze bardziej od przestrzeni geometrycznej — ale nie zatrzymamy się tu dłużej na tej uwadze.
Atoli wzrok pozwala nam oceniać odległości a więc postrzegać trzeci wymiar. Wiadomo wszakże, iż to postrzeganie trzeciego wymiaru sprowadza się do wysiłku akomodacyjnego oraz do wysiłku zbieżności, którą nadać trzeba obu oczom, aby wyraźnie postrzegać dany przedmiot.