której niebo jest ustawicznie pokryte grubą zasłoną obłoków, tak iż nie widać stamtąd nigdy innych ciał niebieskich; człowiekowi temu planeta ta będzie się zdawała odosobnioną w przestrzeni. Człowiek ten będzie wszakże mógł dostrzedz, że się ona obraca, bądź przez pomiar spłaszczenia (co robi się zazwyczaj z pomocą obserwacyi astronomicznych, lecz mogłoby być uskutecznione środkami wyłącznie geodezyjnemi) bądź przez powtórzenie eksperymentu Foucaulta. Obrót bezwzględny tej planety mógłby zatym zostać ujawniony.
Jest to fakt, który razi filozofa, fizyk przecież zmuszony jest go uznać.
Wiadomo, że z faktu tego Newton wywnioskował istnienie przestrzeni bezwzględnej; z poglądem tym nie mogę żadną miarą się zgodzić, co uzasadnię w części trzeciej niniejszej książki. W tej chwili jednak nie chciałbym jeszcze rozważyć tej trudności.
Musiałem tedy pogodzić się z tym, że w sformułowaniu prawa względności pomieszane są ze sobą prędkości wszelkiego rodzaju wśród danych, określających stan ciał.
W każdym razie trudność ta zachodzi równie dobrze dla geometryi euklidesowej, jak dla geometryi Łobaczewskiego; nie mamy więc powodu niepokoić się nią, i mówiliśmy o niej tylko przygodnie.
Ważne jest dla nas to, że doświadczenie nie może rozstrzygnąć między Euklidesem a Łobaczewskim.
Słowem, w którąkolwiek stronę się zwrócimy, nie widzimy możności wykrycia, jaki sens rozumny możnaby nadać empiryzmowi geometrycznemu.
6. Doświadczenia pozwalają nam poznać jedynie wzajemne stosunki ciał: żadne z nich nie dotyczy i dotyczyć nie może stosunków ciał do przestrzeni ani stosunków wzajemnych poszczególnych częsci przestrzeni.
»Zapewne«, powie kto na to, »jedno doświadczenie wystarczyć nie może, bo daje nam tylko jedno równanie z kilku niewiadomemi; kiedy wszakże wykonam dostateczną ilość
Strona:H. Poincaré-Nauka i Hypoteza.djvu/74
Ta strona została uwierzytelniona.