Strona:H. Poincaré-Nauka i Metoda.djvu/028

Ta strona została uwierzytelniona.

budowy na oznaczony termin. Mało dba on o to, czy będzie to użyteczne dla inżynierów XXII-go stulecia; my oceniamy tę kwestję z innego stanowiska, i więcej nam sprawia niekiedy zadowolenia zaoszczędzenie dnia pracy naszym wnukom, niż godziny naszym współczesnym.
Niekiedy, idąc omackiem, empirycznie poniekąd, osiągamy wzór dostatecznie zbieżny. I czegóż wam więcej potrzeba, powie nam inżynier; a my, pomimo wszystko, nie jesteśmy zadowoleni, wolelibyśmy przewidzieć tę zbieżność. Dlaczego? bo gdybyśmy potrafili przewidzieć ją raz, potrafilibyśmy przewidzieć ją innym razem. Powiodło nam się — jestto dla nas bardzo niewiele, jeżeli nie mamy poważnej nadziei, że powiedzie się znowu.
W miarę rozwoju nauki staje się trudniejszym ogarnięcie jej całej; wówczas usiłuje się pokrajać ją na kawałki, ograniczyć się jednym takim kawałkiem; słowem — specjalizować się. Gdyby proces ten trwał dalej, stałoby się to dotkliwą przeszkodą dla postępów nauki. Jak powiedzieliśmy, postępy jej mogą być wywołane nieoczekiwanemi zbliżeniami rozmaitych jej części. Zbytnia specjalizacja wykluczałaby takie zbliżenia. Miejmy nadzieję, że kongresy takie, jak heidelberski i rzymski, nawiązując komunikację między matematykami, otworzą nam widok na pole sąsiada, zmuszą nas do porównania tego pola do naszego, do wychylenia się poza naszą wioskę; staną się one w ten sposób najlepszym lekarstwem na niebezpieczeństwo powyżej wskazane.
Ale zadużo trawię czasu na uwagi ogólne, pora już wejść w szczegóły.
Dokonajmy przeglądu rozmaitych nauk szczególnych, których zespół stanowi matematykę; zobaczmy, co każda z nich zrobiła, dokąd zmierza, i czego można się od niej spodziewać. Jeżeli powyższe poglądy są słuszne, będziemy musieli stwierdzić, że w przeszłości wielkie postępy zachodziły wówczas, gdy dwie z tych nauk zbliżyły się do siebie, gdy uświadomiono sobie podobieństwo ich form pomimo odmienności ich treści, gdy jedna jęła się modelować na drugiej,