scy niemal są o wiele bardziej wymagający, chcą wiedzieć nietylko, czy wszystkie sylogizmy danego dowodu są poprawne, ale nadto, dlaczego wiążą się one w takim porządku a nie w innym. Dopóki wydają się im one wytworem kaprysu nie zaś umysłu bezustannie świadomego celu, do którego zmierza, sądzą oni, że nie zrozumieli.
Zapewne nie zdają sobie oni sami dobrze sprawy, czego wymagają, i nie umieliby sformułować swych życzeń, ale nie są zadowoleni, czują niewyraźnie, że coś im brakuje. Cóż następuje wówczas? Na początku postrzegają oni jeszcze rzeczy oczywiste, które się im przedkłada; ponieważ jednak są one związane z poprzedzającemi i z następującemi nicią zbyt cienką, przesuwają się one, nie pozostawiając śladu w ich mózgu; idą natychmiast w zapomnienie; po jednej chwili oświetlenia pogrążają się one znowu w noc wieczną. Kiedy posuną się oni dalej w matematyce, nie będą widzieli nawet i tego przemijającego światła, bo twierdzenia opierają się jedne na drugich, a te, któreby im były potrzebne, będą zapomniane; w ten sposób staną się oni niezdolni do rozumienia matematyki.
Nie zawsze jestto wina profesora; często umysł ich, który musi postrzegać nić przewodnią, jest zbyt leniwy, by szukać jej i by ją znaleźć. Ale żeby im przyjść z pomocą, musimy przedewszystkim dobrze zrozumieć, o co się oni potykają.
Inni będą sobie ustawicznie zadawali pytanie: do czego to służy? nie będą rozumieli, dopóki nie znajdą dokoła siebie, w praktyce czy w przyrodzie, racji bytu tego lub innego pojęcia matematycznego. Pod każdy wyraz chcieliby podłożyć obraz zmysłowy; definicja musi wywoływać w ich umyśle ten obraz, w każdym stadjum dowodzenia muszą widzieć, jak się obraz ten przekształca i rozwija. Pod tym jedynie warunkiem zrozumieją i zapamiętają. Ci ulegają często własnemu złudzeniu; nie słuchają oni rozumowań, patrzą na figury; zdaje im się, że zrozumieli, a oni tylko widzieli.
2. Ileż rozmaitych skłonności! Czy należy je zwalczać?
Strona:H. Poincaré-Nauka i Metoda.djvu/092
Ta strona została uwierzytelniona.