Cantor przedsięwziął wprowadzenie do matematyki nieskończoności aktualnej, to znaczy ilości, która nietylko jest zdolna przekroczyć wszelkie granice, lecz którą uważa się za taką, która je istotnie przekroczyła. Nasuwają się pytania w rodzaju następujących: Czy punktów w przestrzeni jest więcej niż liczb całkowitych? Czy w przestrzeni jest więcej punktów niż na płaszczyźnie? Itp.
Ilość liczb całkowitych, ilość punktów w przestrzeni itd. jest dla Cantora liczbą kardynalną nadskończoną, to znaczy liczbą kardynalną większą niż wszystkie zwykłe liczby kardynalne. Zajął się on następnie porównaniem tych liczb kardynalnych nadskończonych; przez ułożenie w odpowiednim porządku elementów zespołu, który zawiera ich nieskończoność, wymyślił on również liczby porządkowe nadskończone, nad któremi się nie będę tutaj rozwodził.
Liczni matematycy puścili się w jego ślady i postawili sobie szereg podobnych pytań. W takim stopniu spoufalili się z liczbami nadskończonemi, że w końcu doszli do uzależnienia teorji liczb skończonych od teorji liczb kardynalnych Cantora. Ich zdaniem prawdziwie logiczny wykład matematyki powinien rozpocząć od ustanowienia własności ogólnych liczb kardynalnych nadskończonych, i następnie wyodrębnić z pośród nich pewną malutką klasę — zwykłych liczb całkowitych. Dzięki tej okólnej drodze możnaby było dowieść wszystkich twierdzeń, dotyczących tej małej klasy (to znaczy całej naszej arytmetyki i algiebry), nie opierając się na żadnej zasadzie, nieobjętej logiką.
Metoda ta jest oczywiście przeciwna wszelkiej zdrowej psychologji; nie tak z pewnością postępował umysł ludzki, gdy budował matematykę; to też autorzy jej nie zamierzają, jak mniemam, wprowadzić ją do nauczania średniego. Ale czy jest ona przynajmniej logiczna, albo, mówiąc trafniej, czy jest poprawna? Wolno jest o tym wątpić.
Jednakże matematycy, którzy się nią posługiwali, są bardzo liczni. Nagromadzili wzory i wyzwolili się w swym mniemaniu od wszystkiego, co nie jest czystą logiką, przez
Strona:H. Poincaré-Nauka i Metoda.djvu/112
Ta strona została uwierzytelniona.