Strona:H. Poincaré-Nauka i Metoda.djvu/151

Ta strona została uwierzytelniona.

Drugi brzmi, jak następuje:

u ε K (K — ɩ Λ).. u < υ′u

Pierwszy postulat nie jest bardziej oczywisty, niż zasada, o której dowód idzie; drugi nietylko nie jest oczywisty lecz jest nieprawdziwy; jak to okazał Whitehead, jak zresztą zauważyłby odrazu każdy kret, jeśliby ten pewnik został wyrażony w języku zrozumiałym, gdyż znaczy on tyle: ilość kombinacji, które można utworzyć z kilku przedmiotów, jest mniejsza niż ilość tych przedmiotów.

X.
Pewnik Zermelo.

W słynnym swym dowodzie Zermelo opiera się na następującym pewniku:
W jakimkolwiek zespole (lub nawet w każdym zespole zespołu zespołów) można zawsze wybrać na chybi trafi element (nawet jeśliby ten zespół zespołów zawierał nieskończoność zespołów). Pewnik ten stosowano tysiące razy, nie formułując go, ale skoro tylko go sformułowano, wywołał on wątpliwości. Niektórzy matematycy, jak Borel, stanowczo go odrzucili; w innych budzi on podziw. Zobaczmy, co o nim myśli Russell według jego ostatniego artykułu.
Nie wypowiada się on za ani przeciw, ale rozważania, którym się oddaje, są wysoce suggiestywne.
Przedewszystkim malowniczy przykład: przypuśćmy, że posiadamy tyle par butów, ile istnieje liczb całkowitych, tak iż moglibyśmy ponumerować pary od 1 do nieskończoności — ile będziemy mieli butów? Czy ilość butów będzie równa ilości par? Tak, jeśli w każdej parze but prawy różni się od buta lewego; istotnie, wystarczy wówczas nadać numer 2n - 1 butowi prawemu n-ej pary, i numer 2n butowi lewemu n-ej pary. Nie, — jeśli but lewy jest taki sam jak prawy, gdyż podobna operacja stanie się niemożliwa. Chyba, że się przyjmie pewnik Zermelo, ponieważ wówczas można będzie wy-