prawéj stronie na sumę n3 równych składników, a następnie przez odpowiednie uporządkowanie tych składników, drugi zaś wynika z pierwszego przy zastosowaniu prawa przemienności.
Jeżeli czynniki iloczynu n1 n2,...,nr są wszystkie równe jednéj liczbie n, wtedy mnożenie przechodzi w potęgowanie albo podnoszenie do potęgi, iloczyn zaś n1 n2 ... nr = n n ... n przyjmuje nazwę r-éj potęgi liczby n i oznacza się przez nr. Liczba n nazywa się podstawą potęgi, liczba r jéj wykładnikiem.
Potęgowanie nie jest przemienném ani łączném, gdyż
oraz
posiada natomiast własności wyrażone wzorami
9. | nr + s = nr ns nrs = (nr)s (mn)r = mrnr, |
odpowiadające prawu rozdzielności mnożenia; właściwie tylko, ostatni z wzorów 9. wyraża ściśle tę własność, która łączy potęgowanie z mnożeniem w podobny sposób, w jaki wzory 8. łączą mnożenie z dodawaniem. Pierwsze dwa wzory 9., nie mające analogicznych sobie w dodawaniu i mnożeniu, wyrażają charakterystyczne własności potęgowania[1].
Opisane wyżéj działania: dodawanie, mnożenie i potęgowanie nazywają się działaniami prostemi; w przeciwstawieniu do nich cztery następujące nazywają się działaniami odwrotnemi. [Działania proste nazywa Hankel tetycznemi — thetische Operationen, odwrotne — litycznemi, lytische Operationen].
Odejmowanie jest to działanie odwrotne względem dodawania; jest to takie działanie, za pomocą którego wyznaczamy liczbę x, czyniącą zadość równaniu
1. | x - n2 = n1. |
Liczba x nazywa się różnicą liczb n1 i n2 i oznacza się przez n1 - n2. Kładąc za x to wyrażenie w równaniu 1., otrzymujemy
- ↑ Powtórzenie potęgowania prowadzi do działań
a a a a a a . a . . . . i t. d. które uważają niektórzy za nowe działanie, za “czwarty stopień„ działań. Wszakże działanie to jest małego użytku i mało zbadane. Porówn. artykuł E. Schultzego, Die vierte Rechenstufe [Archiv der Mathematik und Physik, 2 ser. IX, zeszyt 3, 1890, str. 320-326].