Strona:PL Samuel Dickstein - Pojęcia i metody matematyki.djvu/107

Ta strona została przepisana.


ROZDZIAŁ III.
LICZBY UŁAMKOWE.

13. TEORYE DZIAŁAŃ NAD UŁAMKAMI.

Rachunek na ułamkach sięga czasów najstarożytniejszych. Przed czterdziestu wiekami rachmistrze egipscy znali już sposoby oznaczania ułamków i umieli rozkładać je na ułamki prostsze; babilończycy hindusowie, grecy i rzymianie posługiwali się ułamkami, lecz dopiero po wprowadzeniu Arytmetyki cyfrowéj ustanowiono ogólne prawidła rachunku tak z ułamkami zwyczajnemi jak i dziesiętnemi[1]. Tu, jak wszędzie, praktyka poprzedziła teoryą. Działania nad wielkościami wykazały potrzebę i ważność ułamków, wszakże dopiero teorya działań wyjaśniła właściwą istotę tych nowych form liczbowych i działań nad niemi.
Według teoryi, wyłożonéj w art 9. i 10., ułamkiem nazywamy liczbę, zadość czyniącą równaniu

x b = a

gdy co do a i b nie czynimy żadnych zastrzeżeń [z wyjątkiem warunku, by b nie było równe zeru]; pojęcie zatém liczby ułamkowéj obejmuje w sobie i pojęcie liczby całkowitéj, mianowicie dla przypadku, gdy a = b lub a jest wielokrotnością liczby b.
Zasada zachowania przepisuje nam stosowanie do działań nad nowemi liczbami tych samych praw, które mają miejsce dla dziedziny pierwotnéj liczb całkowitych.

  1. Szczegóły historyczne o ułamkach u starożytnych znaleźć można w dziele M. Cantora, Vorlesungen über Geschichte der Mathematik, I. Band. 1880; o rachunku z ułamkami w wiekach średnich i nowożytnych u Günthera, Geschichte des mathematischen Unterrichts im dentachen Mittelalter bis zum Jahre 1525, 1887 i u Ungera. Die Methoden der praktischen Arithmetik in historischer Entwickelung vom Ausgange des Mittelalters bis auf die Gegenwart, 1888.