[4]
[5]
Od lat kilku zupełnie zależałem pole gramatyki, a ugrzązłem, raczej pogrążyłem się w matematyce, nie jako fachowy, ale jak dyletant, samouczek, bez prawideł, wskazówek i znajomości powszechnie przyjętych formuł. Napisałem kwadraty i sześciany liczb od 1 {\displaystyle 1} do 1000 {\displaystyle 1000} z ich różnicami. Potęgowałem liczby małe: 2 , {\displaystyle 2,} 2 2 , {\displaystyle 2^{2},} 2 3 … {\displaystyle 2^{3}\ldots } 2 300 ; {\displaystyle 2^{300};} 3 , {\displaystyle 3,} 3 2 , {\displaystyle 3^{2},} 3 3 … {\displaystyle 3^{3}\ldots } 3 200 ; {\displaystyle 3^{200};} 5 , {\displaystyle 5,} 5 2 , {\displaystyle 5^{2},} 5 3 … {\displaystyle 5^{3}\ldots } 5 150 ; {\displaystyle 5^{150};} 7 , {\displaystyle 7,} 7 2 , {\displaystyle 7^{2},} 7 3 … {\displaystyle 7^{3}\ldots } 7 85 . {\displaystyle 7^{85}.} Przy tej pracy poznałem stosunki i prawidła, o których później się dowiedziałem, że nazywane są dwumianem Newton’a. Zastanawiając się nad stosunkami i prawami wykładników, wpadłem na trop, który mię doprowadził do zbadania wielokształtu podzielności liczb złożonych. Przytem zbadałem wszystkie liczby w zakresie numeracyi od 0 {\displaystyle 0} do 1000 {\displaystyle 1000} ; potem do 10 000 {\displaystyle 10\,000} . Za wskazówką i poradą Dra Webera zapisałem sobie dzieło Wertheima „Die Theorie der Zahlen“, ale jego wykład i znakowanie — dla mnie, jako laika, były orzechami zanadto twardemi na moje zęby. Zainteresowała mię jednak funkcya φ ( m ) {\displaystyle \operatorname {\varphi } (m)} , jako mająca związek z moją analizą liczb w celu znalezienia prawideł, zapomocą których mógłbym poznać, która liczba jest pierwszą, [6]a jakie są cechy liczb złożonych. Przy pomocy Dra Hossfelda w Eisenach, poznałem zasady funkcyi φ ( m ) {\displaystyle \operatorname {\varphi } (m)} . Opracowując tę funkcyę w zakresie do 100 000 {\displaystyle 100\,000} , potem do 1 , 000 000 {\displaystyle 1,000\,000} , wykryłem okresy symetrycznych luk między liczbami względnie pierwszemi, po usunięciu każdej z porządku z liczb pierwszych ze wszystkiemi przez nią podzielnemi liczbami i prawidło ogólne, że
Wykryta zaś symetrya luk w danym okresie, t. j. że luka 1-sza = {\displaystyle =} luce ostatniej, 2-ga = {\displaystyle =} przedostatniej , 3-cia z początku = {\displaystyle =} 3-ciej od końca i t. d. aż do połowy, czyli środka okresu, to jest do p 1 . p 2 . p 3 … p n 2 {\displaystyle {{p_{1}.p_{2}.p_{3}\ldots p_{n}} \over 2}} wskazała możność obliczenia na poczekaniu i zakresu numeracyi 0 , 1 , 2 , 3 , … m = p 1 . p 2 . p 3 … p n + r {\displaystyle 0,1,2,3,\ldots m=p_{1}.p_{2}.p_{3}\ldots p_{n}+r} , oraz m = g . p 1 . p 2 . p 3 … p n ± r {\displaystyle m=g.p_{1}.p_{2}.p_{3}\ldots p_{n}\pm {r}} , gdyż φ ( p 1 . p 2 . p 3 … p n ± r , n ) = ( p 1 − 1 ) ( p 2 − 1 ) ( p 3 − 1 ) … ( p n − 1 ) { + φ ( r , n ) − φ ( r − 1 , n ) , {\displaystyle \operatorname {\varphi } (p_{1}.p_{2}.p_{3}\ldots p_{n}\pm {r},n)=(p_{1}-1)(p_{2}-1)(p_{3}-1)\ldots (p_{n}-1){\begin{cases}+\operatorname {\varphi } (r,n)\\-\operatorname {\varphi } (r-1,n),\end{cases}}} oraz φ ( g . ( p 1 . p 2 . p 3 … p n ± r , n ) ) = ( g ( p 1 − 1 ) ( p 2 − 1 ) ( p 3 − 1 ) … ( p n − 1 ) { + φ ( r , n ) − φ ( r − 1 , n ) . {\displaystyle \operatorname {\varphi } (g.(p_{1}.p_{2}.p_{3}\ldots p_{n}\pm {r},n))=(g(p_{1}-1)(p_{2}-1)(p_{3}-1)\ldots (p_{n}-1){\begin{cases}+\operatorname {\varphi } (r,n)\\-\operatorname {\varphi } (r-1,n).\end{cases}}} Zakomunikowałem te spostrzeżenia przez p. Webera Drowi Hossfeldowi, który przyznał im wielką wagę; ale potem zawiadomił mię, że już w roku 1872 Dr. Meissel te same prawa odkrył i ogłosił, tylko jeszcze nie wiedział o wewnętrznej symetryi okresów i dla tego wzór jego posiada tylko + r , {\displaystyle +r,} ale nie − r . {\displaystyle -r.} Wydrukował o tem za mojem przyzwoleniem króciutki artykulik o dopełnieniu przeze mnie wzoru Meissela. Artykulik wyszedł niefortunnie, bo przed wydrukowaniem nie przysłał mi go do przejrzenia. Wsadził doń bez potrzeby własnego pomysłu p x , {\displaystyle p_{x},} bez potrzeby i sensu. Kiedym go później przekonał, iż wszystkie trudności i pomyłki wyrażenie − φ ( r − 1 , n ) {\displaystyle -\operatorname {\varphi } (r-1,n)} usuwa, przysłał mi do przejrzenia napisany do druku drugi artykulik o tem samem; ale jego objaśnienie − φ ( r − 1 , n ) , − 1 {\displaystyle -\operatorname {\varphi } (r-1,n),-1} , nie trafiło do mojego przekonania; moje zaś objaśnienie on uważał za naciągnięte. W ten sposób artykulik jego nie wyszedł z druku. Dla większego jeszcze uproszczenia obliczeń funkcyi φ ( m ) {\displaystyle \operatorname {\varphi } (m)} , ułożyłem analityczną tablicę okresu p 6 , {\displaystyle p_{6},} t. j. φ ( 2.3.5.7.11.13 , 6 ) = φ ( 30030 , 6 ) {\displaystyle \operatorname {\varphi } (2.3.5.7.11.13,6)=\operatorname {\varphi } (30030,6)} , która wielkie daje ułatwienie przy obliczaniu większych zakresów numeracyi. [7] Potem napisałem teoryę luk, których Dr. Hossfeld nie podjął się sprawdzić. Nareszcie usunąwszy wszystkie liczby podzielne przez 2 , {\displaystyle 2,} 3 {\displaystyle 3} i 5 {\displaystyle 5} , jako łatwe do poznania, zanalizowałem zakres numeracyi 0 , {\displaystyle 0,} 1 , {\displaystyle 1,} 2 , {\displaystyle 2,} 3 , … {\displaystyle 3,\ldots } 150 060 {\displaystyle 150\,060} , czyli liczby wszystkie pierwsze w tym zakresie, oraz podzielne przez 7 , {\displaystyle 7,} 11 , {\displaystyle 11,} 13 , {\displaystyle 13,} 17 , … , {\displaystyle 17,\ldots ,} t. j. przez p 4 , {\displaystyle p_{4},} p 5 , {\displaystyle p_{5},} p 6 , {\displaystyle p_{6},} p 7 , … {\displaystyle p_{7},\ldots } Spisałem na ogół liczb 40 008 {\displaystyle 40\,008} , oznaczając je właściwemi czynnikami n. p. 49 = 7 2 , {\displaystyle 49=7^{2},} 77 = 7.11 ; {\displaystyle 77=7.11;} 91 = 7.13 , {\displaystyle 91=7.13,} 1001 = 7.11.13 {\displaystyle 1001=7.11.13} i t. d. Później z tego kajetu wypisałem osobno same tylko liczby pierwsze, to jest:
Gustaw Wertheim w dziele „Elemente der Zahlentheorie“ (Leipzig 1887) rozwija i przykładem objaśnia następujący wzór Meissel’a do obliczenia w danym zakresie numeracyi liczb pierwszych str. 24.
ψ ( n ) {\displaystyle \operatorname {\psi } (n)} oznacza tutaj, ile się zawiera liczb bezwzględnie pierwszych w zakresie numeracyi od 0 , {\displaystyle 0,} 1 , {\displaystyle 1,} 2 , {\displaystyle 2,} 3 , … {\displaystyle 3,\ldots } n . {\displaystyle n.} m {\displaystyle m} oznacza, ile liczb pierwszych znajduje się w sześciennym pierwiastku zakresu n {\displaystyle n} , czyli m = φ ( n 3 ) {\displaystyle m=\operatorname {\varphi } {\Bigl (}{\sqrt[{3}]{n}}{\Bigr )}} . μ {\displaystyle \mu } oznacza, ile liczb pierwszych znajduje się w pierwiastku kwadratowym 2 {\displaystyle {\sqrt {2}}} , po odjęciu liczby tychże liczb, będących w pierwiastku sześciennym, czyli μ = ψ n − m {\displaystyle \mu =\psi {\sqrt {n}}-m} .
Wzór ten, dobry przy obliczaniu niewielkich zakresów numeracyi, kiedy n {\displaystyle n} nie przewyższa setek, tysięcy; znośny jeszcze i przy obliczaniu dziesiątek tysięcy; w wielkich zaś zakresach numeracyi, wymaga wiele miejsca, czasu i pracy. Można się o tem przekonać, obliczając choćby tylko
ponieważ zaś m = ψ ( n 3 ) = ψ ( 46 ) = 14 , {\displaystyle m=\operatorname {\psi } ({\sqrt[{3}]{n}})=\operatorname {\psi } (46)=14,} [8]przeto μ = [ ψ ( n ) = ψ ( 316 ) = 65 ] − 14 = 51 ; {\displaystyle \mu =\left[\psi \left({\sqrt {n}}\right)=\psi \left(316\right)=65\right]-14=51;} m + μ = ψ ( n ) = 65 {\displaystyle m+\mu =\psi \left({\sqrt {n}}\right)=65} φ ( n , m ) = φ ( 100 000 , 14 ) = 14204 {\displaystyle \varphi (n,m)=\varphi (100\,000,14)=14204} . Tego trzeba dowieść rachunkiem następującym. Liczby te 14 są następujące: p 1 = 2 , {\displaystyle p_{1}=2,} p 2 = 3 , {\displaystyle p_{2}=3,} p 3 = 5 , {\displaystyle p_{3}=5,} p 4 = 7 , {\displaystyle p_{4}=7,} p 5 = 11 , {\displaystyle p_{5}=11,} p 6 = 13 , {\displaystyle p_{6}=13,} p 7 = 17 , {\displaystyle p_{7}=17,} p 8 = 19 , {\displaystyle p_{8}=19,} p 9 = 23 , {\displaystyle p_{9}=23,} p 10 = 29 , {\displaystyle p_{10}=29,} p 11 = 31 , {\displaystyle p_{11}=31,} p 12 = 37 , {\displaystyle p_{12}=37,} p 13 = 41 , {\displaystyle p_{13}=41,} p 14 = 43 ; {\displaystyle p_{14}=43;}
φ ( 313 , 4 ) = φ ( 313 , 3 ) − φ ( 44 , 3 ) = 84 − 12 = 72 {\displaystyle \varphi (313,4)=\varphi (313,3)-\varphi (\,\,\,44,3)=\,\,\,\,\,\,84\,\,\,\,\,\,\,-12=\,\,\,72} φ ( 313 , 3 ) = φ ( 313 , 2 ) − φ ( 62 , 2 ) = 105 − 21 = 84 {\displaystyle \varphi (313,3)=\varphi (313,2)-\varphi (\,\,\,62,2)=\,\,\,105\,\,\,\,\,\,\,-21=\,\,\,84} φ ( 313 , 2 ) = φ ( 313 , 1 ) − φ ( 104 , 1 ) = 157 − 52 = 105 {\displaystyle \varphi (313,2)=\varphi (313,1)-\varphi (104,1)=\,\,\,157\,\,\,\,\,\,\,-52=105} φ ( 62 , 2 ) = φ ( 62 , 1 ) − φ ( 20 , 1 ) = 31 − 10 {\displaystyle \varphi (\,\,\,62,2)=\varphi (62,1)-\varphi (20,1)=31-\,\,\,10}
= {\displaystyle =}
21 {\displaystyle 21}
φ ( 44 , 3 ) = φ ( 44 , 2 ) − φ ( 8 , 2 ) = 15 − 3 {\displaystyle \varphi (\,\,\,44,3)=\varphi (44,2)-\varphi (\,\,\,8,2)=15-\,\,\,\,\,\,3} φ ( 44 , 2 ) = φ ( 44 , 1 ) − φ ( 12 , 1 ) = 22 − 7 {\displaystyle \varphi (\,\,\,44,2)=\varphi (44,1)-\varphi (12,1)=22-\,\,\,\,\,\,7}
= {\displaystyle =} = {\displaystyle =}
12 {\displaystyle 12} 15 {\displaystyle 15}
φ ( 265 , 5 ) = φ ( 265 , 4 ) − φ ( 24 , 4 ) = 61 − 6 = 55 {\displaystyle \varphi (265,5)=\varphi (265,4)-\varphi (\,\,\,24,4)=\,\,\,\,\,\,61\,\,\,\,\,\,\,-\,\,\,6=\,\,\,55} φ ( 265 , 4 ) = φ ( 265 , 3 ) − φ ( 37 , 3 ) = 71 − 10 = 61 {\displaystyle \varphi (265,4)=\varphi (265,3)-\varphi (\,\,\,37,3)=\,\,\,\,\,\,71\,\,\,\,\,\,\,-10=\,\,\,61} φ ( 265 , 3 ) = φ ( 265 , 2 ) − φ ( 53 , 2 ) = 89 − 18 = 71 {\displaystyle \varphi (265,3)=\varphi (265,2)-\varphi (\,\,\,53,2)=\,\,\,\,\,\,89\,\,\,\,\,\,\,-18=\,\,\,71} φ ( 265 , 2 ) = φ ( 265 , 1 ) − φ ( 88 , 1 ) = 133 − 44 = 89 {\displaystyle \varphi (265,2)=\varphi (265,1)-\varphi (\,\,\,88,1)=\,\,\,133\,\,\,\,\,\,\,-44=\,\,\,89} φ ( 53 , 2 ) = φ ( 53 , 1 ) − φ ( 17 , 1 ) = 27 − 9 {\displaystyle \varphi (\,\,\,53,2)=\varphi (53,1)-\varphi (17,1)=27-\,\,\,\,\,\,9}
18 {\displaystyle 18}
φ ( 37 , 3 ) = φ ( 37 , 2 ) − φ ( 7 , 2 ) = 13 − 3 {\displaystyle \varphi (\,\,\,37,3)=\varphi (37,2)-\varphi (\,\,\,7,2)=13-\,\,\,\,\,\,3} φ ( 37 , 2 ) = φ ( 37 , 1 ) − φ ( 14 , 1 ) = 19 − 6 {\displaystyle \varphi (\,\,\,37,2)=\varphi (37,1)-\varphi (14,1)=19-\,\,\,\,\,\,6}
10 {\displaystyle 10} 13 {\displaystyle 13}
φ ( 202 , 6 ) = φ ( 202 , 5 ) − φ ( 15 , 5 ) = 43 − 2 = 41 {\displaystyle \varphi (202,6)=\varphi (202,5)-\varphi (\,\,\,15,5)=\,\,\,\,\,\,43\,\,\,\,\,\,\,-\,\,\,2=\,\,\,41} φ ( 202 , 5 ) = φ ( 202 , 4 ) − φ ( 18 , 4 ) = 47 − 4 = 43 {\displaystyle \varphi (202,5)=\varphi (202,4)-\varphi (\,\,\,18,4)=\,\,\,\,\,\,47\,\,\,\,\,\,\,-\,\,\,4=\,\,\,43} φ ( 202 , 4 ) = φ ( 202 , 3 ) − φ ( 28 , 3 ) = 54 − 7 = 47 {\displaystyle \varphi (202,4)=\varphi (202,3)-\varphi (\,\,\,28,3)=\,\,\,\,\,\,54\,\,\,\,\,\,\,-\,\,\,7=\,\,\,47} φ ( 202 , 3 ) = φ ( 202 , 2 ) − φ ( 40 , 2 ) = 67 − 13 = 54 {\displaystyle \varphi (202,3)=\varphi (202,2)-\varphi (\,\,\,40,2)=\,\,\,\,\,\,67\,\,\,\,\,\,\,-13=\,\,\,54} φ ( 202 , 2 ) = φ ( 202 , 1 ) − φ ( 67 , 1 ) = 101 − 34 = 67 {\displaystyle \varphi (202,2)=\varphi (202,1)-\varphi (\,\,\,67,1)=\,\,\,101\,\,\,\,\,\,\,-34=\,\,\,67}
φ ( 181 , 7 ) = φ ( 181 , 6 ) − φ ( 10 , 6 ) = 37 − 1 = 36 {\displaystyle \varphi (181,7)=\varphi (181,6)-\varphi (\,\,\,10,6)=\,\,\,\,\,\,37\,\,\,\,\,\,\,-\,\,\,1=\,\,\,36} φ ( 181 , 6 ) = φ ( 181 , 5 ) − φ ( 13 , 5 ) = 39 − 2 = 37 {\displaystyle \varphi (181,6)=\varphi (181,5)-\varphi (\,\,\,13,5)=\,\,\,\,\,\,39\,\,\,\,\,\,\,-\,\,\,2=\,\,\,37} φ ( 181 , 5 ) = φ ( 181 , 4 ) − φ ( 16 , 4 ) = 42 − 3 = 39 {\displaystyle \varphi (181,5)=\varphi (181,4)-\varphi (\,\,\,16,4)=\,\,\,\,\,\,42\,\,\,\,\,\,\,-\,\,\,3=\,\,\,39} φ ( 181 , 4 ) = φ ( 181 , 3 ) − φ ( 25 , 3 ) = 49 − 7 = 42 {\displaystyle \varphi (181,4)=\varphi (181,3)-\varphi (\,\,\,25,3)=\,\,\,\,\,\,49\,\,\,\,\,\,\,-\,\,\,7=\,\,\,42} φ ( 181 , 3 ) = φ ( 181 , 2 ) − φ ( 36 , 2 ) = 61 − 12 = 49 {\displaystyle \varphi (181,3)=\varphi (181,2)-\varphi (\,\,\,36,2)=\,\,\,\,\,\,61\,\,\,\,\,\,\,-12=\,\,\,49} φ ( 181 , 2 ) = φ ( 181 , 1 ) − φ ( 50 , 1 ) = 91 − 30 = 61 {\displaystyle \varphi (181,2)=\varphi (181,1)-\varphi (\,\,\,50,1)=\,\,\,\,\,\,91\,\,\,\,\,\,\,-30=\,\,\,61} φ ( 36 , 2 ) = φ ( 36 , 1 ) − φ ( 12 , 1 ) = 18 − 6 {\displaystyle \varphi (\,\,\,36,2)=\varphi (36,1)-\varphi (12,1)=18-\,\,\,\,\,\,6}
12 {\displaystyle 12}
φ ( 25 , 3 ) = φ ( 25 , 2 ) − φ ( 5 , 2 ) = 9 − 2 {\displaystyle \varphi (\,\,\,25,3)=\varphi (25,2)-\varphi (\,\,\,5,2)=\,\,\,9-\,\,\,\,\,\,2} φ ( 25 , 2 ) = φ ( 25 , 1 ) − φ ( 8 , 1 ) = 13 − 4 {\displaystyle \varphi (\,\,\,25,2)=\varphi (25,1)-\varphi (\,\,\,8,1)=13-\,\,\,\,\,\,4}
8 {\displaystyle 8} 9 {\displaystyle 9}
φ ( 149 , 8 ) = φ ( 149 , 7 ) − φ ( 7 , 7 ) = 29 − 1 = 28 {\displaystyle \varphi (149,8)=\varphi (149,7)-\varphi (\,\,\,\,\,\,7,7)=\,\,\,\,\,\,29\,\,\,\,\,\,\,-\,\,\,1=\,\,\,28} φ ( 149 , 7 ) = φ ( 149 , 6 ) − φ ( 8 , 6 ) = 30 − 1 = 29 {\displaystyle \varphi (149,7)=\varphi (149,6)-\varphi (\,\,\,\,\,\,8,6)=\,\,\,\,\,\,30\,\,\,\,\,\,\,-\,\,\,1=\,\,\,29} φ ( 149 , 6 ) = φ ( 149 , 5 ) − φ ( 11 , 5 ) = 31 − 1 = 30 {\displaystyle \varphi (149,6)=\varphi (149,5)-\varphi (\,\,\,11,5)=\,\,\,\,\,\,31\,\,\,\,\,\,\,-\,\,\,1=\,\,\,30} φ ( 149 , 5 ) = φ ( 149 , 4 ) − φ ( 13 , 4 ) = 34 − 3 = 31 {\displaystyle \varphi (149,5)=\varphi (149,4)-\varphi (\,\,\,13,4)=\,\,\,\,\,\,34\,\,\,\,\,\,\,-\,\,\,3=\,\,\,31} φ ( 149 , 4 ) = φ ( 149 , 3 ) − φ ( 21 , 3 ) = 40 − 6 = 34 {\displaystyle \varphi (149,4)=\varphi (149,3)-\varphi (\,\,\,21,3)=\,\,\,\,\,\,40\,\,\,\,\,\,\,-\,\,\,6=\,\,\,34} φ ( 149 , 3 ) = φ ( 149 , 2 ) − φ ( 29 , 2 ) = 50 − 10 = 40 {\displaystyle \varphi (149,3)=\varphi (149,2)-\varphi (\,\,\,29,2)=\,\,\,\,\,\,50\,\,\,\,\,\,\,-10=\,\,\,40} φ ( 149 , 2 ) = φ ( 149 , 1 ) − φ ( 49 , 1 ) = 75 − 25 = 50 {\displaystyle \varphi (149,2)=\varphi (149,1)-\varphi (\,\,\,49,1)=\,\,\,\,\,\,75\,\,\,\,\,\,\,-25=\,\,\,50} φ ( 29 , 2 ) = φ ( 29 , 1 ) − φ ( 9 , 1 ) = 15 − 5 {\displaystyle \varphi (\,\,\,29,2)=\varphi (29,1)-\varphi (\,\,\,9,1)=15-\,\,\,\,\,\,5}
10 {\displaystyle 10}
φ ( 3225 , 10 ) = φ ( 3225 , 9 ) − φ ( 111 , 9 ) = 521 − 21 = 500 {\displaystyle \varphi (3225,10)=\varphi (3225,9)-\varphi (\,\,\,111,9)=\,\,\,\,\,\,521\,\,\,\,\,\,\,-21=\,\,\,500} φ ( 3225 , 9 ) = φ ( 3225 , 8 ) − φ ( 140 , 8 ) = 548 − 27 = 521 {\displaystyle \varphi (3225,\,\,\,9)=\varphi (3225,8)-\varphi (\,\,\,140,8)=\,\,\,\,\,\,548\,\,\,\,\,\,\,-27=\,\,\,521} φ ( 3225 , 8 ) = φ ( 3225 , 7 ) − φ ( 169 , 7 ) = 581 − 33 = 548 {\displaystyle \varphi (3225,\,\,\,8)=\varphi (3225,7)-\varphi (\,\,\,169,7)=\,\,\,\,\,\,581\,\,\,\,\,\,\,-33=\,\,\,548} φ ( 3225 , 7 ) = φ ( 3225 , 6 ) − φ ( 189 , 6 ) = 618 − 37 = 581 {\displaystyle \varphi (3225,\,\,\,7)=\varphi (3225,6)-\varphi (\,\,\,189,6)=\,\,\,\,\,\,618\,\,\,\,\,\,\,-37=\,\,\,581} φ ( 3225 , 6 ) = φ ( 3225 , 5 ) − φ ( 248 , 5 ) = 670 − 52 = 618 {\displaystyle \varphi (3225,\,\,\,6)=\varphi (3225,5)-\varphi (\,\,\,248,5)=\,\,\,\,\,\,670\,\,\,\,\,\,\,-52=\,\,\,618} φ ( 3225 , 5 ) = φ ( 3225 , 4 ) − φ ( 293 , 4 ) = 738 − 68 = 670 {\displaystyle \varphi (3225,\,\,\,5)=\varphi (3225,4)-\varphi (\,\,\,293,4)=\,\,\,\,\,\,738\,\,\,\,\,\,\,-68=\,\,\,670} φ ( 3225 , 4 ) = φ ( 3225 , 3 ) − φ ( 460 , 3 ) = 860 − 122 = 738 {\displaystyle \varphi (3225,\,\,\,4)=\varphi (3225,3)-\varphi (\,\,\,460,3)=\,\,\,\,\,\,860\,\,\,\,-122=\,\,\,738} φ ( 3225 , 3 ) = φ ( 3225 , 2 ) − φ ( 645 , 2 ) = 1075 − 215 = 860 {\displaystyle \varphi (3225,\,\,\,3)=\varphi (3225,2)-\varphi (\,\,\,645,2)=\,\,\,1075\,\,\,\,-215=\,\,\,860} φ ( 3225 , 2 ) = φ ( 3225 , 1 ) − φ ( 1075 , 1 ) = 1613 − 538 = 1075 {\displaystyle \varphi (3225,\,\,\,2)=\varphi (3225,1)-\varphi (1075,1)=\,\,\,1613\,\,\,\,-538=1075} φ ( 645 , 2 ) = φ ( 645 , 1 ) − φ ( 215 , 1 ) = 323 − 108 = 215 {\displaystyle \varphi (\,\,\,645,2)=\varphi (\,\,\,645,1)-\varphi (215,1)=323-\,\,\,108=215}
φ ( 460 , 3 ) = φ ( 460 , 2 ) − φ ( 92 , 2 ) = 153 − 31 = 122 {\displaystyle \varphi (\,\,\,460,3)=\varphi (\,\,\,460,2)-\varphi (\,\,\,92,2)=153-\,\,\,\,\,\,31=122} φ ( 460 , 2 ) = φ ( 460 , 1 ) − φ ( 153 , 1 ) = 230 − 77 = 153 {\displaystyle \varphi (\,\,\,460,2)=\varphi (\,\,\,460,1)-\varphi (153,1)=230-\,\,\,\,\,\,77=153} φ ( 92 , 2 ) = φ ( 92 , 1 ) − φ ( 30 , 1 ) = 46 − 15 {\displaystyle \varphi (\,\,\,\,\,92,2)=\varphi (\,\,\,92,1)-\varphi (30,1)=46-15}
31 {\displaystyle \,\,\,31}
φ ( 293 , 4 ) = φ ( 293 , 4 ) − φ ( 41 , 3 ) = 79 − 11 = 68 {\displaystyle \varphi (\,\,\,293,4)=\varphi (\,\,\,293,4)-\varphi (\,\,\,41,3)=\,\,\,79-\,\,\,\,\,\,11=\,\,\,68} φ ( 293 , 3 ) = φ ( 293 , 2 ) − φ ( 58 , 2 ) = 98 − 19 = 79 {\displaystyle \varphi (\,\,\,293,3)=\varphi (\,\,\,293,2)-\varphi (\,\,\,58,2)=\,\,\,98-\,\,\,\,\,\,19=\,\,\,79} φ ( 293 , 2 ) = φ ( 293 , 1 ) − φ ( 97 , 1 ) = 147 − 49 = 98 {\displaystyle \varphi (\,\,\,293,2)=\varphi (\,\,\,293,1)-\varphi (\,\,\,97,1)=147-\,\,\,\,\,\,49=\,\,\,98} φ ( 58 , 2 ) = φ ( 58 , 1 ) − φ ( 19 , 1 ) = 19 − 10 {\displaystyle \varphi (\,\,\,\,\,58,2)=\varphi (\,\,\,58,1)-\varphi (19,1)=19-10}
19 {\displaystyle \,\,\,19}
φ ( 41 , 3 ) = φ ( 41 , 2 ) − φ ( 8 , 2 ) = 41 − 3 {\displaystyle \varphi (\,\,\,41,3)\,\,\,=\,\,\,\varphi (41,2)-\varphi (\,\,\,8,2)=41-\,\,\,3} φ ( 41 , 2 ) = φ ( 41 , 1 ) − φ ( 13 , 1 ) = 21 − 7 {\displaystyle \varphi (\,\,\,41,2)\,\,\,=\,\,\,\varphi (41,1)-\varphi (13,1)=21-\,\,\,7} φ ( 8 , 2 ) = φ ( 8 , 1 ) − φ ( 2 , 1 ) = 4 − 1 {\displaystyle \varphi (\,\,\,\,\,\,8,2)\,\,\,=\,\,\,\varphi (\,\,\,8,1)-\varphi (\,\,\,2,1)=\,\,\,4-\,\,\,1}
= {\displaystyle =} = {\displaystyle =} = {\displaystyle =}
11 {\displaystyle \,\,\,11} 14 {\displaystyle \,\,\,14} 3 {\displaystyle \,\,\,\,\,\,3}
φ ( 248 , 5 ) = φ ( 248 , 4 ) − φ ( 22 , 4 ) = 57 − 5 = 52 {\displaystyle \varphi (\,\,\,248,5)=\varphi (\,\,\,248,4)-\varphi (\,\,\,22,4)=\,\,\,57-\,\,\,\,\,\,5=52} φ ( 248 , 4 ) = φ ( 248 , 3 ) − φ ( 35 , 3 ) = 66 − 9 = 57 {\displaystyle \varphi (\,\,\,248,4)=\varphi (\,\,\,248,3)-\varphi (\,\,\,35,3)=\,\,\,66-\,\,\,\,\,\,9=57} φ ( 248 , 3 ) = φ ( 248 , 2 ) − φ ( 49 , 2 ) = 83 − 17 = 66 {\displaystyle \varphi (\,\,\,248,3)=\varphi (\,\,\,248,2)-\varphi (\,\,\,49,2)=\,\,\,83-\,\,\,17=66} φ ( 248 , 2 ) = φ ( 248 , 1 ) − φ ( 82 , 1 ) = 124 − 41 = 83 {\displaystyle \varphi (\,\,\,248,2)=\varphi (\,\,\,248,1)-\varphi (\,\,\,82,1)=124-\,\,\,41=83} φ ( 49 , 2 ) = φ ( 49 , 1 ) − φ ( 16 , 1 ) = 25 − 8 {\displaystyle \varphi (\,\,\,49,2)\,\,\,=\,\,\,\varphi (49,1)-\varphi (16,1)=25-\,\,\,8}
17 {\displaystyle \,\,\,17}
φ ( 35 , 3 ) = φ ( 35 , 2 ) − φ ( 7 , 2 ) = 12 − 3 {\displaystyle \varphi (\,\,\,35,3)\,\,\,=\,\,\,\varphi (35,2)-\varphi (\,\,\,7,2)=12-\,\,\,3} φ ( 35 , 2 ) = φ ( 35 , 1 ) − φ ( 11 , 1 ) = 18 − 6 {\displaystyle \varphi (\,\,\,35,2)\,\,\,=\,\,\,\varphi (35,1)-\varphi (11,1)=18-\,\,\,6} φ ( 7 , 2 ) = φ ( 7 , 1 ) − φ ( 2 , 1 ) = 4 − 1 {\displaystyle \varphi (\,\,\,\,\,\,7,2)\,\,\,=\,\,\,\varphi (\,\,\,7,1)-\varphi (\,\,\,2,1)=\,\,\,4-\,\,\,1}
9 {\displaystyle \,\,\,\,\,\,9} 12 {\displaystyle \,\,\,12} 3 {\displaystyle \,\,\,\,\,\,3}
φ ( 189 , 6 ) = φ ( 189 , 5 ) − φ ( 14 , 5 ) = 39 − 2 = 37 {\displaystyle \varphi (\,\,\,189,6)=\varphi (\,\,\,189,5)-\varphi (\,\,\,14,5)=\,\,\,39-\,\,\,\,\,\,2=37} φ ( 189 , 5 ) = φ ( 189 , 4 ) − φ ( 17 , 4 ) = 43 − 4 = 39 {\displaystyle \varphi (\,\,\,189,5)=\varphi (\,\,\,189,4)-\varphi (\,\,\,17,4)=\,\,\,43-\,\,\,\,\,\,4=39} φ ( 189 , 4 ) = φ ( 189 , 3 ) − φ ( 27 , 3 ) = 50 − 7 = 43 {\displaystyle \varphi (\,\,\,189,4)=\varphi (\,\,\,189,3)-\varphi (\,\,\,27,3)=\,\,\,50-\,\,\,\,\,\,7=43} φ ( 189 , 3 ) = φ ( 189 , 2 ) − φ ( 37 , 2 ) = 63 − 13 = 50 {\displaystyle \varphi (\,\,\,189,3)=\varphi (\,\,\,189,2)-\varphi (\,\,\,37,2)=\,\,\,63-\,\,\,13=50} φ ( 189 , 2 ) = φ ( 189 , 1 ) − φ ( 63 , 1 ) = 95 − 32 = 63 {\displaystyle \varphi (\,\,\,189,2)=\varphi (\,\,\,189,1)-\varphi (\,\,\,63,1)=\,\,\,95-\,\,\,32=63} φ ( 37 , 2 ) = φ ( 37 , 1 ) − φ ( 12 , 1 ) = 19 − 6 {\displaystyle \varphi (\,\,\,37,2)\,\,\,=\,\,\,\varphi (37,1)-\varphi (12,1)=19-\,\,\,6}
13 {\displaystyle \,\,\,13}
φ ( 27 , 3 ) = φ ( 27 , 2 ) − φ ( 5 , 2 ) = 9 − 2 = 7 {\displaystyle \varphi (\,\,\,27,3)=\varphi (\,\,\,27,2)-\varphi (\,\,\,\,\,\,5,2)=\,\,\,\,\,\,9\,\,\,\,\,\,\,-\,\,\,2=\,\,\,\,\,\,7} φ ( 27 , 2 ) = φ ( 27 , 1 ) − φ ( 9 , 1 ) = 14 − 5 = 9 {\displaystyle \varphi (\,\,\,27,2)=\varphi (\,\,\,27,1)-\varphi (\,\,\,\,\,\,9,1)=\,\,\,14\,\,\,\,\,\,\,-\,\,\,5=\,\,\,\,\,\,9} φ ( 5 , 2 ) = φ ( 5 , 1 ) − φ ( 2 , 1 ) = 3 − 1 {\displaystyle \varphi (\,\,\,5,2)=\varphi (\,\,\,5,1)-\varphi (2,1)=\,\,\,\,\,\,3-\,\,\,\,\,\,1}
2 {\displaystyle \,\,\,2}
φ ( 17 , 4 ) = φ ( 17 , 3 ) − φ ( 1 , 3 ) = 5 − 1 = 4 {\displaystyle \varphi (\,\,\,17,4)=\varphi (\,\,\,17,3)-\varphi (\,\,\,\,\,\,1,3)=\,\,\,\,\,\,5\,\,\,\,\,\,\,-\,\,\,1=\,\,\,\,\,\,4} φ ( 17 , 3 ) = φ ( 17 , 2 ) − φ ( 2 , 2 ) = 6 − 1 = 5 {\displaystyle \varphi (\,\,\,17,3)=\varphi (\,\,\,17,2)-\varphi (\,\,\,\,\,\,2,2)=\,\,\,\,\,\,6\,\,\,\,\,\,\,-\,\,\,1=\,\,\,\,\,\,5} φ ( 17 , 2 ) = φ ( 17 , 1 ) − φ ( 5 , 1 ) = 9 − 3 = 6 {\displaystyle \varphi (\,\,\,17,2)=\varphi (\,\,\,17,1)-\varphi (\,\,\,\,\,\,5,1)=\,\,\,\,\,\,9\,\,\,\,\,\,\,-\,\,\,3=\,\,\,\,\,\,6}
φ ( 169 , 7 ) = φ ( 169 , 6 ) − φ ( 9 , 6 ) = 34 − 1 = 33 {\displaystyle \varphi (169,7)=\varphi (169,6)-\varphi (\,\,\,\,\,\,9,6)=\,\,\,34\,\,\,\,\,\,\,-\,\,\,1=\,\,\,33} φ ( 169 , 6 ) = φ ( 169 , 5 ) − φ ( 13 , 5 ) = 36 − 2 = 34 {\displaystyle \varphi (169,6)=\varphi (169,5)-\varphi (\,\,\,13,5)=\,\,\,36\,\,\,\,\,\,\,-\,\,\,2=\,\,\,34} φ ( 169 , 5 ) = φ ( 169 , 4 ) − φ ( 15 , 4 ) = 39 − 3 = 36 {\displaystyle \varphi (169,5)=\varphi (169,4)-\varphi (\,\,\,15,4)=\,\,\,39\,\,\,\,\,\,\,-\,\,\,3=\,\,\,36} φ ( 169 , 4 ) = φ ( 169 , 3 ) − φ ( 24 , 3 ) = 46 − 7 = 39 {\displaystyle \varphi (169,4)=\varphi (169,3)-\varphi (\,\,\,24,3)=\,\,\,46\,\,\,\,\,\,\,-\,\,\,7=\,\,\,39} φ ( 169 , 3 ) = φ ( 169 , 2 ) − φ ( 33 , 2 ) = 57 − 11 = 46 {\displaystyle \varphi (169,3)=\varphi (169,2)-\varphi (\,\,\,33,2)=\,\,\,57\,\,\,\,\,\,\,-11=\,\,\,46} φ ( 169 , 2 ) = φ ( 169 , 1 ) − φ ( 56 , 1 ) = 85 − 28 = 57 {\displaystyle \varphi (169,2)=\varphi (169,1)-\varphi (\,\,\,56,1)=\,\,\,85\,\,\,\,\,\,\,-28=\,\,\,57} φ ( 33 , 2 ) = φ ( 33 , 1 ) − φ ( 11 , 1 ) = 17 − 6 {\displaystyle \varphi (33,2)=\varphi (33,1)-\varphi (11,1)=\,\,\,17-\,\,\,\,\,\,6}
11 {\displaystyle 11}
φ ( 24 , 3 ) = φ ( 24 , 2 ) − φ ( 4 , 2 ) = 8 − 1 = 7 {\displaystyle \varphi (\,\,\,24,3)=\varphi (\,\,\,24,2)-\varphi (\,\,\,\,\,\,4,2)=\,\,\,\,\,\,8\,\,\,\,\,\,\,-\,\,\,1=\,\,\,\,\,\,7} φ ( 24 , 2 ) = φ ( 24 , 1 ) − φ ( 8 , 1 ) = 12 − 4 = 8 {\displaystyle \varphi (\,\,\,24,2)=\varphi (\,\,\,24,1)-\varphi (\,\,\,\,\,\,8,1)=\,\,\,12\,\,\,\,\,\,\,-\,\,\,4=\,\,\,\,\,\,8}
φ ( 140 , 8 ) = φ ( 140 , 7 ) − φ ( 7 , 7 ) = 28 − 1 = 27 {\displaystyle \varphi (140,8)=\varphi (140,7)-\varphi (\,\,\,\,\,\,7,7)=\,\,\,28\,\,\,\,\,\,\,-\,\,\,1=\,\,\,27} φ ( 140 , 7 ) = φ ( 140 , 6 ) − φ ( 8 , 6 ) = 29 − 1 = 28 {\displaystyle \varphi (140,7)=\varphi (140,6)-\varphi (\,\,\,\,\,\,8,6)=\,\,\,29\,\,\,\,\,\,\,-\,\,\,1=\,\,\,28} φ ( 140 , 6 ) = φ ( 140 , 5 ) − φ ( 10 , 5 ) = 30 − 1 = 29 {\displaystyle \varphi (140,6)=\varphi (140,5)-\varphi (\,\,\,10,5)=\,\,\,30\,\,\,\,\,\,\,-\,\,\,1=\,\,\,29} φ ( 140 , 5 ) = φ ( 140 , 4 ) − φ ( 12 , 4 ) = 32 − 2 = 30 {\displaystyle \varphi (140,5)=\varphi (140,4)-\varphi (\,\,\,12,4)=\,\,\,32\,\,\,\,\,\,\,-\,\,\,2=\,\,\,30} φ ( 140 , 4 ) = φ ( 140 , 3 ) − φ ( 20 , 3 ) = 38 − 6 = 32 {\displaystyle \varphi (140,4)=\varphi (140,3)-\varphi (\,\,\,20,3)=\,\,\,38\,\,\,\,\,\,\,-\,\,\,6=\,\,\,32} φ ( 140 , 3 ) = φ ( 140 , 2 ) − φ ( 28 , 2 ) = 47 − 9 = 38 {\displaystyle \varphi (140,3)=\varphi (140,2)-\varphi (\,\,\,28,2)=\,\,\,47\,\,\,\,\,\,\,-\,\,\,9=\,\,\,38} φ ( 140 , 2 ) = φ ( 140 , 1 ) − φ ( 46 , 1 ) = 70 − 23 = 47 {\displaystyle \varphi (140,2)=\varphi (140,1)-\varphi (\,\,\,46,1)=\,\,\,70\,\,\,\,\,\,\,-23=\,\,\,47} φ ( 28 , 2 ) = φ ( 28 , 1 ) − φ ( 9 , 1 ) = 14 − 5 = 9 {\displaystyle \varphi (\,\,\,28,2)=\varphi (\,\,\,28,1)-\varphi (\,\,\,\,\,\,9,1)=\,\,\,14\,\,\,\,\,\,\,-\,\,\,5=\,\,\,\,\,\,9}
φ ( 20 , 3 ) = φ ( 20 , 2 ) − φ ( 4 , 2 ) = 7 − 1 = 6 {\displaystyle \varphi (\,\,\,20,3)=\varphi (\,\,\,20,2)-\varphi (\,\,\,\,\,\,4,2)=\,\,\,\,\,\,7\,\,\,\,\,\,\,-\,\,\,1=\,\,\,\,\,\,6} φ ( 20 , 2 ) = φ ( 20 , 1 ) − φ ( 6 , 1 ) = 10 − 3 = 7 {\displaystyle \varphi (\,\,\,20,2)=\varphi (\,\,\,20,1)-\varphi (\,\,\,\,\,\,6,1)=\,\,\,10\,\,\,\,\,\,\,-\,\,\,3=\,\,\,\,\,\,7} φ ( 4 , 2 ) = φ ( 4 , 1 ) − φ ( 1 , 1 ) = 2 − 1 {\displaystyle \varphi (\,\,\,4,2)=\varphi (\,\,\,4,1)-\varphi (\,\,\,1,1)=\,\,\,\,\,\,2-\,\,\,\,\,\,1}
1 {\displaystyle \,\,\,1}
φ ( 12 , 4 ) = φ ( 12 , 3 ) − φ ( 1 , 3 ) = 3 − 1 = 2 {\displaystyle \varphi (\,\,\,12,4)=\varphi (\,\,\,12,3)-\varphi (\,\,\,\,\,\,1,3)=\,\,\,\,\,\,3\,\,\,\,\,\,\,-\,\,\,1=\,\,\,\,\,\,2} φ ( 12 , 3 ) = φ ( 12 , 2 ) − φ ( 2 , 2 ) = 4 − 1 = 3 {\displaystyle \varphi (\,\,\,12,3)=\varphi (\,\,\,12,2)-\varphi (\,\,\,\,\,\,2,2)=\,\,\,\,\,\,4\,\,\,\,\,\,\,-\,\,\,1=\,\,\,\,\,\,3} φ ( 12 , 2 ) = φ ( 12 , 1 ) − φ ( 4 , 1 ) = 6 − 2 = 4 {\displaystyle \varphi (\,\,\,12,2)=\varphi (\,\,\,12,1)-\varphi (\,\,\,\,\,\,4,1)=\,\,\,\,\,\,6\,\,\,\,\,\,\,-\,\,\,2=\,\,\,\,\,\,4}
φ ( 111 , 9 ) = φ ( 111 , 8 ) − φ ( 4 , 8 ) = 22 − 1 = 21 {\displaystyle \varphi (111,9)=\varphi (111,8)-\varphi (\,\,\,\,\,\,4,8)=\,\,\,22\,\,\,\,\,\,\,-\,\,\,1=\,\,\,21} φ ( 111 , 8 ) = φ ( 111 , 7 ) − φ ( 5 , 7 ) = 23 − 1 = 22 {\displaystyle \varphi (111,8)=\varphi (111,7)-\varphi (\,\,\,\,\,\,5,7)=\,\,\,23\,\,\,\,\,\,\,-\,\,\,1=\,\,\,22} φ ( 111 , 7 ) = φ ( 111 , 6 ) − φ ( 6 , 6 ) = 24 − 1 = 23 {\displaystyle \varphi (111,7)=\varphi (111,6)-\varphi (\,\,\,\,\,\,6,6)=\,\,\,24\,\,\,\,\,\,\,-\,\,\,1=\,\,\,23} φ ( 111 , 6 ) = φ ( 111 , 5 ) − φ ( 8 , 5 ) = 25 − 1 = 24 {\displaystyle \varphi (111,6)=\varphi (111,5)-\varphi (\,\,\,\,\,\,8,5)=\,\,\,25\,\,\,\,\,\,\,-\,\,\,1=\,\,\,24} φ ( 111 , 5 ) = φ ( 111 , 4 ) − φ ( 10 , 4 ) = 26 − 1 = 25 {\displaystyle \varphi (111,5)=\varphi (111,4)-\varphi (\,\,\,10,4)=\,\,\,26\,\,\,\,\,\,\,-\,\,\,1=\,\,\,25} φ ( 111 , 4 ) = φ ( 111 , 3 ) − φ ( 15 , 3 ) = 30 − 4 = 26 {\displaystyle \varphi (111,4)=\varphi (111,3)-\varphi (\,\,\,15,3)=\,\,\,30\,\,\,\,\,\,\,-\,\,\,4=\,\,\,26} φ ( 111 , 3 ) = φ ( 111 , 2 ) − φ ( 22 , 2 ) = 37 − 7 = 30 {\displaystyle \varphi (111,3)=\varphi (111,2)-\varphi (\,\,\,22,2)=\,\,\,37\,\,\,\,\,\,\,-\,\,\,7=\,\,\,30} φ ( 111 , 2 ) = φ ( 111 , 1 ) − φ ( 37 , 1 ) = 56 − 19 = 37 {\displaystyle \varphi (111,2)=\varphi (111,1)-\varphi (\,\,\,37,1)=\,\,\,56\,\,\,\,\,\,\,-19=\,\,\,37} φ ( 22 , 2 ) = φ ( 22 , 1 ) − φ ( 7 , 1 ) = 11 − 4 {\displaystyle \varphi (22,2)=\varphi (22,1)-\varphi (\,\,\,7,1)=\,\,\,11-\,\,\,\,\,\,4}
7 {\displaystyle \,\,\,7}
φ ( 2702 , 11 ) = φ ( 2702 , 10 ) − φ ( 87 , 10 ) = 420 − 14 = 406 {\displaystyle \varphi (2702,11)=\varphi (2702,10)-\varphi (\,\,\,87,10)=\,\,\,\,\,\,420\,\,\,\,\,\,\,-\,\,\,14=\,\,\,406} φ ( 2702 , 10 ) = φ ( 2702 , 9 ) − φ ( 93 , 9 ) = 436 − 16 = 420 {\displaystyle \varphi (2702,10)=\varphi (2702,\,\,\,9)-\varphi (\,\,\,93,\,\,\,9)=\,\,\,\,\,\,436\,\,\,\,\,\,\,-\,\,\,16=\,\,\,420} φ ( 2702 , 9 ) = φ ( 2702 , 8 ) − φ ( 117 , 8 ) = 459 − 23 = 436 {\displaystyle \varphi (2702,\,\,\,9)=\varphi (2702,\,\,\,8)-\varphi (117,\,\,\,8)=\,\,\,\,\,\,459\,\,\,\,\,\,\,-\,\,\,23=\,\,\,436} φ ( 2702 , 8 ) = φ ( 2702 , 7 ) − φ ( 142 , 7 ) = 487 − 28 = 459 {\displaystyle \varphi (2702,\,\,\,8)=\varphi (2702,\,\,\,7)-\varphi (142,\,\,\,7)=\,\,\,\,\,\,487\,\,\,\,\,\,\,-\,\,\,28=\,\,\,459} φ ( 2702 , 7 ) = φ ( 2702 , 6 ) − φ ( 158 , 6 ) = 519 − 32 = 487 {\displaystyle \varphi (2702,\,\,\,7)=\varphi (2702,\,\,\,6)-\varphi (158,\,\,\,6)=\,\,\,\,\,\,519\,\,\,\,\,\,\,-\,\,\,32=\,\,\,487} φ ( 2702 , 6 ) = φ ( 2702 , 5 ) − φ ( 207 , 5 ) = 562 − 43 = 519 {\displaystyle \varphi (2702,\,\,\,6)=\varphi (2702,\,\,\,5)-\varphi (207,\,\,\,5)=\,\,\,\,\,\,562\,\,\,\,\,\,\,-\,\,\,43=\,\,\,519} φ ( 2702 , 5 ) = φ ( 2702 , 4 ) − φ ( 245 , 4 ) = 618 − 56 = 562 {\displaystyle \varphi (2702,\,\,\,5)=\varphi (2702,\,\,\,4)-\varphi (245,\,\,\,4)=\,\,\,\,\,\,618\,\,\,\,\,\,\,-\,\,\,56=\,\,\,562} φ ( 2702 , 4 ) = φ ( 2702 , 3 ) − φ ( 386 , 3 ) = 721 − 103 = 618 {\displaystyle \varphi (2702,\,\,\,4)=\varphi (2702,\,\,\,3)-\varphi (386,\,\,\,3)=\,\,\,\,\,\,721\,\,\,\,\,\,\,-103=\,\,\,618} φ ( 2702 , 3 ) = φ ( 2702 , 2 ) − φ ( 540 , 2 ) = 901 − 180 = 721 {\displaystyle \varphi (2702,\,\,\,3)=\varphi (2702,\,\,\,2)-\varphi (540,\,\,\,2)=\,\,\,\,\,\,901\,\,\,\,\,\,\,-180=\,\,\,721} φ ( 2702 , 2 ) = φ ( 2702 , 1 ) − φ ( 900 , 1 ) = 1351 − 450 = 901 {\displaystyle \varphi (2702,\,\,\,2)=\varphi (2702,\,\,\,1)-\varphi (900,\,\,\,1)=\,\,\,1351\,\,\,\,\,\,\,-450=\,\,\,901} φ ( 540 , 2 ) = φ ( 540 , 1 ) − φ ( 180 , 1 ) = 270 − 90 {\displaystyle \varphi (\,\,\,540,\,\,\,2)=\varphi (540,\,\,\,1)-\varphi (180,1)=270-\,\,\,\,\,\,90}
180 {\displaystyle 180}
φ ( 386 , 3 ) = φ ( 386 , 2 ) − φ ( 77 , 2 ) = 129 − 26 {\displaystyle \varphi (386,\,\,\,3)=\varphi (386,\,\,\,2)-\varphi (\,\,\,77,2)=129-\,\,\,\,\,\,26} φ ( 386 , 2 ) = φ ( 386 , 1 ) − φ ( 128 , 1 ) = 193 − 64 {\displaystyle \varphi (386,\,\,\,2)=\varphi (386,\,\,\,1)-\varphi (128,1)=193-\,\,\,\,\,\,64} φ ( 77 , 2 ) = φ ( 77 , 1 ) − φ ( 25 , 1 ) = 39 − 13 {\displaystyle \varphi (\,\,\,77,\,\,\,2)=\varphi (\,\,\,77,\,\,\,1)-\varphi (\,\,\,25,1)=\,\,\,39-\,\,\,\,\,\,13}
103 {\displaystyle 103} 129 {\displaystyle 129} 26 {\displaystyle \,\,\,26}
φ ( 245 , 4 ) = φ ( 245 , 3 ) − φ ( 35 , 3 ) = 65 − 9 {\displaystyle \varphi (245,\,\,\,4)=\varphi (245,\,\,\,3)-\varphi (\,\,\,35,3)=\,\,\,65-\,\,\,\,\,\,9} φ ( 245 , 3 ) = φ ( 245 , 2 ) − φ ( 49 , 2 ) = 82 − 17 {\displaystyle \varphi (245,\,\,\,3)=\varphi (245,\,\,\,2)-\varphi (\,\,\,49,2)=\,\,\,82-\,\,\,17} φ ( 245 , 2 ) = φ ( 245 , 1 ) − φ ( 81 , 1 ) = 123 − 41 {\displaystyle \varphi (245,\,\,\,2)=\varphi (245,\,\,\,1)-\varphi (\,\,\,81,1)=123-\,\,\,41} φ ( 49 , 2 ) = φ ( 49 , 1 ) − φ ( 16 , 1 ) = 25 − 8 {\displaystyle \varphi (49,\,\,\,2)=\varphi (49,\,\,\,1)-\varphi (\,\,\,16,1)=\,\,\,25-\,\,\,\,\,\,8}
= {\displaystyle =} = {\displaystyle =} = {\displaystyle =} = {\displaystyle =}
56 {\displaystyle \,\,\,56} 65 {\displaystyle \,\,\,65} 82 {\displaystyle \,\,\,82} 17 {\displaystyle \,\,\,17}
φ ( 35 , 3 ) = φ ( 35 , 2 ) − φ ( 7 , 2 ) = 12 − 3 {\displaystyle \varphi (\,\,\,35,\,\,\,3)=\varphi (\,\,\,35,\,\,\,2)-\varphi (\,\,\,\,\,\,7,2)=\,\,\,12-\,\,\,\,\,\,3} φ ( 35 , 2 ) = φ ( 35 , 1 ) − φ ( 11 , 1 ) = 18 − 6 {\displaystyle \varphi (\,\,\,35,\,\,\,2)=\varphi (\,\,\,35,\,\,\,1)-\varphi (\,\,\,11,1)=\,\,\,18-\,\,\,\,\,\,6} φ ( 7 , 2 ) = φ ( 7 , 1 ) − φ ( 2 , 1 ) = 4 − 1 {\displaystyle \varphi (7,\,\,\,2)=\varphi (\,\,\,7,\,\,\,1)-\varphi (\,\,\,2,1)=\,\,\,\,\,\,4-\,\,\,\,\,\,1}
φ ( 207 , 5 ) = φ ( 207 , 4 ) − φ ( 18 , 4 ) = 47 − 4 {\displaystyle \varphi (207,\,\,\,5)=\varphi (207,\,\,\,4)-\varphi (\,\,\,18,4)=\,\,\,47-\,\,\,\,\,\,4} φ ( 207 , 4 ) = φ ( 207 , 3 ) − φ ( 29 , 3 ) = 55 − 8 {\displaystyle \varphi (207,\,\,\,4)=\varphi (207,\,\,\,3)-\varphi (\,\,\,29,3)=\,\,\,55-\,\,\,\,\,\,8} φ ( 207 , 3 ) = φ ( 207 , 2 ) − φ ( 41 , 2 ) = 69 − 14 {\displaystyle \varphi (207,\,\,\,3)=\varphi (207,\,\,\,2)-\varphi (\,\,\,41,2)=\,\,\,69-\,\,\,14} φ ( 207 , 2 ) = φ ( 207 , 1 ) − φ ( 69 , 1 ) = 104 − 35 {\displaystyle \varphi (207,\,\,\,2)=\varphi (207,\,\,\,1)-\varphi (\,\,\,69,1)=104-\,\,\,35} φ ( 41 , 2 ) = φ ( 41 , 1 ) − φ ( 13 , 1 ) = 21 − 7 {\displaystyle \varphi (41,\,\,\,2)=\varphi (\,\,\,41,\,\,\,1)-\varphi (\,\,\,13,1)=\,\,\,21-\,\,\,\,\,\,7}
= {\displaystyle =} = {\displaystyle =} = {\displaystyle =} = {\displaystyle =} = {\displaystyle =}
43 {\displaystyle \,\,\,43} 47 {\displaystyle \,\,\,47} 55 {\displaystyle \,\,\,55} 69 {\displaystyle \,\,\,69} 14 {\displaystyle \,\,\,14}
φ ( 29 , 3 ) = φ ( 29 , 2 ) − φ ( 5 , 2 ) = 10 − 2 {\displaystyle \varphi (29,\,\,\,3)=\varphi (\,\,\,29,\,\,\,2)-\varphi (\,\,\,\,\,\,5,2)=\,\,\,10-\,\,\,\,\,\,2} φ ( 29 , 2 ) = φ ( 29 , 1 ) − φ ( 9 , 2 ) = 15 − 5 {\displaystyle \varphi (29,\,\,\,2)=\varphi (\,\,\,29,\,\,\,1)-\varphi (\,\,\,\,\,\,9,2)=\,\,\,15-\,\,\,\,\,\,5} φ ( 5 , 2 ) = φ ( 5 , 1 ) − φ ( 1 , 1 ) = 3 − 1 {\displaystyle \varphi (\,\,\,5,\,\,\,2)=\varphi (\,\,\,\,\,\,5,\,\,\,1)-\varphi (1,1)=\,\,\,\,\,\,3-\,\,\,\,\,\,1}
8 {\displaystyle \,\,\,\,\,\,8} 10 {\displaystyle \,\,\,10} 2 {\displaystyle \,\,\,\,\,\,2}
φ ( 18 , 4 ) = φ ( 18 , 3 ) − φ ( 2 , 3 ) = 5 − 1 {\displaystyle \varphi (18,\,\,\,4)=\varphi (\,\,\,18,\,\,\,3)-\varphi (\,\,\,2,3)=\,\,\,\,\,\,5-\,\,\,\,\,\,1} φ ( 18 , 3 ) = φ ( 18 , 2 ) − φ ( 3 , 2 ) = 6 − 1 {\displaystyle \varphi (18,\,\,\,3)=\varphi (\,\,\,18,\,\,\,2)-\varphi (\,\,\,3,2)=\,\,\,\,\,\,6-\,\,\,\,\,\,1} φ ( 18 , 2 ) = φ ( 18 , 1 ) − φ ( 6 , 1 ) = 9 − 3 {\displaystyle \varphi (18,\,\,\,2)=\varphi (\,\,\,18,\,\,\,1)-\varphi (\,\,\,6,1)=\,\,\,\,\,\,9-\,\,\,\,\,\,3}
4 {\displaystyle \,\,\,\,\,\,4} 5 {\displaystyle \,\,\,\,\,\,5} 6 {\displaystyle \,\,\,\,\,\,6}
φ ( 158 , 6 ) = φ ( 158 , 5 ) − φ ( 12 , 5 ) = 33 − 1 = 32 {\displaystyle \varphi (158,\,\,\,6)=\varphi (158,\,\,\,5)-\varphi (\,\,\,12,5)=\,\,\,33-\,\,\,\,\,\,1=\,\,\,32} φ ( 158 , 5 ) = φ ( 158 , 4 ) − φ ( 14 , 4 ) = 36 − 3 = 33 {\displaystyle \varphi (158,\,\,\,5)=\varphi (158,\,\,\,4)-\varphi (\,\,\,14,4)=\,\,\,36-\,\,\,\,\,\,3=\,\,\,33} φ ( 158 , 4 ) = φ ( 158 , 3 ) − φ ( 22 , 3 ) = 42 − 6 = 36 {\displaystyle \varphi (158,\,\,\,4)=\varphi (158,\,\,\,3)-\varphi (\,\,\,22,3)=\,\,\,42-\,\,\,\,\,\,6=\,\,\,36} [18] φ ( 158 , 3 ) = φ ( 158 , 2 ) − φ ( 31 , 2 ) = 53 − 11 = 42 {\displaystyle \varphi (158,\,\,\,3)=\varphi (158,\,\,\,2)-\varphi (\,\,\,31,2)=\,\,\,53-\,\,\,11=\,\,\,42} φ ( 158 , 2 ) = φ ( 158 , 1 ) − φ ( 52 , 1 ) = 79 − 26 = 53 {\displaystyle \varphi (158,\,\,\,2)=\varphi (158,\,\,\,1)-\varphi (\,\,\,52,1)=\,\,\,79-\,\,\,26=\,\,\,53} φ ( 31 , 2 ) = φ ( 31 , 1 ) − φ ( 10 , 1 ) = 16 − 5 {\displaystyle \varphi (\,\,\,31,\,\,\,2)=\varphi (31,\,\,\,1)-\varphi (10,1)=\,\,\,16-\,\,\,\,\,\,5}
11 {\displaystyle \,\,\,11}
φ ( 22 , 3 ) = φ ( 22 , 2 ) − φ ( 4 , 2 ) = 7 − 1 = 6 {\displaystyle \varphi (\,\,\,22,\,\,\,3)=\varphi (\,\,\,22,\,\,\,2)-\varphi (\,\,\,\,\,\,4,2)=\,\,\,\,\,\,7-\,\,\,\,\,\,1=\,\,\,\,\,\,6} φ ( 22 , 2 ) = φ ( 22 , 1 ) − φ ( 7 , 1 ) = 11 − 4 = 7 {\displaystyle \varphi (\,\,\,22,\,\,\,2)=\varphi (\,\,\,22,\,\,\,1)-\varphi (\,\,\,\,\,\,7,1)=\,\,\,11-\,\,\,\,\,\,4=\,\,\,\,\,\,7} φ ( 4 , 2 ) = φ ( 4 , 1 ) − φ ( 1 , 1 ) = 2 − 1 {\displaystyle \varphi (4,\,\,\,2)=\varphi (\,\,\,4,\,\,\,1)-\varphi (1,1)=\,\,\,\,\,2-\,\,\,\,\,\,1}
1 {\displaystyle \,\,\,\,\,\,1}
φ ( 14 , 4 ) = φ ( 14 , 3 ) − φ ( 2 , 3 ) = 4 − 1 = 3 {\displaystyle \varphi (\,\,\,14,\,\,\,4)=\varphi (\,\,\,14,\,\,\,3)-\varphi (\,\,\,\,\,\,2,3)=\,\,\,\,\,\,4-\,\,\,\,\,\,1=\,\,\,\,\,\,3} φ ( 14 , 3 ) = φ ( 14 , 2 ) − φ ( 2 , 2 ) = 5 − 1 = 4 {\displaystyle \varphi (\,\,\,14,\,\,\,3)=\varphi (\,\,\,14,\,\,\,2)-\varphi (\,\,\,\,\,\,2,2)=\,\,\,\,\,\,5-\,\,\,\,\,\,1=\,\,\,\,\,\,4} φ ( 14 , 2 ) = φ ( 14 , 1 ) − φ ( 4 , 1 ) = 7 − 2 = 5 {\displaystyle \varphi (\,\,\,14,\,\,\,2)=\varphi (\,\,\,14,\,\,\,1)-\varphi (\,\,\,\,\,\,4,1)=\,\,\,\,\,\,7-\,\,\,\,\,\,2=\,\,\,\,\,\,5}
φ ( 142 , 7 ) = φ ( 142 , 6 ) − φ ( 8 , 6 ) = 29 − 1 = 28 {\displaystyle \varphi (142,\,\,\,7)=\varphi (142,\,\,\,6)-\varphi (\,\,\,\,\,\,8,6)=\,\,\,29-\,\,\,\,\,\,1=\,\,\,28} φ ( 142 , 6 ) = φ ( 142 , 5 ) − φ ( 10 , 5 ) = 30 − 1 = 29 {\displaystyle \varphi (142,\,\,\,6)=\varphi (142,\,\,\,5)-\varphi (\,\,\,10,5)=\,\,\,30-\,\,\,\,\,\,1=\,\,\,29} φ ( 142 , 5 ) = φ ( 142 , 4 ) − φ ( 12 , 4 ) = 32 − 2 = 30 {\displaystyle \varphi (142,\,\,\,5)=\varphi (142,\,\,\,4)-\varphi (\,\,\,12,4)=\,\,\,32-\,\,\,\,\,\,2=\,\,\,30} φ ( 142 , 4 ) = φ ( 142 , 3 ) − φ ( 20 , 3 ) = 38 − 6 = 32 {\displaystyle \varphi (142,\,\,\,4)=\varphi (142,\,\,\,3)-\varphi (\,\,\,20,3)=\,\,\,38-\,\,\,\,\,\,6=\,\,\,32} φ ( 142 , 3 ) = φ ( 142 , 2 ) − φ ( 28 , 2 ) = 47 − 9 = 38 {\displaystyle \varphi (142,\,\,\,3)=\varphi (142,\,\,\,2)-\varphi (\,\,\,28,2)=\,\,\,47-\,\,\,\,\,\,9=\,\,\,38} φ ( 142 , 2 ) = φ ( 142 , 1 ) − φ ( 47 , 1 ) = 71 − 24 = 47 {\displaystyle \varphi (142,\,\,\,2)=\varphi (142,\,\,\,1)-\varphi (\,\,\,47,1)=\,\,\,71-\,\,\,24=\,\,\,47} φ ( 28 , 2 ) = φ ( 28 , 1 ) − φ ( 9 , 1 ) = 14 − 5 {\displaystyle \varphi (\,\,\,28,\,\,\,2)=\varphi (28,\,\,\,1)-\varphi (9,1)=\,\,\,14-\,\,\,\,\,\,5}
9 {\displaystyle \,\,\,\,\,\,9}
φ ( 20 , 3 ) = φ ( 20 , 2 ) − φ ( 4 , 2 ) = 7 − 1 = 6 {\displaystyle \varphi (\,\,\,20,\,\,\,3)=\varphi (\,\,\,20,\,\,\,2)-\varphi (\,\,\,\,\,\,4,2)=\,\,\,\,\,\,7-\,\,\,\,\,\,1=\,\,\,\,\,\,6} φ ( 20 , 2 ) = φ ( 20 , 1 ) − φ ( 6 , 1 ) = 10 − 3 = 7 {\displaystyle \varphi (\,\,\,20,\,\,\,2)=\varphi (\,\,\,20,\,\,\,1)-\varphi (\,\,\,\,\,\,6,1)=\,\,\,10-\,\,\,\,\,\,3=\,\,\,\,\,\,7} φ ( 4 , 2 ) = φ ( 4 , 1 ) − φ ( 1 , 1 ) = 2 − 1 = 1 {\displaystyle \varphi (4,\,\,\,2)=\varphi (\,\,\,4,\,\,\,1)-\varphi (1,1)=\,\,\,\,\,\,2-\,\,\,\,\,\,1=\,\,\,\,\,\,1}
φ ( 12 , 4 ) = φ ( 12 , 3 ) − φ ( 1 , 3 ) = 3 − 1 = 2 {\displaystyle \varphi (\,\,\,12,\,\,\,4)=\varphi (\,\,\,12,\,\,\,3)-\varphi (\,\,\,\,\,\,1,3)=\,\,\,\,\,\,3-\,\,\,\,\,\,1=\,\,\,\,\,\,2} φ ( 12 , 3 ) = φ ( 12 , 2 ) − φ ( 2 , 2 ) = 4 − 1 = 3 {\displaystyle \varphi (\,\,\,12,\,\,\,3)=\varphi (\,\,\,12,\,\,\,2)-\varphi (\,\,\,\,\,\,2,2)=\,\,\,\,\,\,4-\,\,\,\,\,\,1=\,\,\,\,\,\,3} φ ( 12 , 2 ) = φ ( 12 , 1 ) − φ ( 4 , 1 ) = 6 − 2 = 4 {\displaystyle \varphi (\,\,\,12,\,\,\,2)=\varphi (\,\,\,12,\,\,\,1)-\varphi (\,\,\,\,\,\,4,1)=\,\,\,\,\,\,6-\,\,\,\,\,\,2=\,\,\,\,\,\,4}
φ ( 117 , 8 ) = φ ( 117 , 7 ) − φ ( 6 , 7 ) = 24 − 1 = 23 {\displaystyle \varphi (117,\,\,\,8)=\varphi (117,\,\,\,7)-\varphi (\,\,\,6,\,\,\,7)=\,\,\,24-\,\,\,\,\,\,1=\,\,\,23} φ ( 117 , 7 ) = φ ( 117 , 6 ) − φ ( 6 , 6 ) = 25 − 1 = 24 {\displaystyle \varphi (117,\,\,\,7)=\varphi (117,\,\,\,6)-\varphi (\,\,\,6,\,\,\,6)=\,\,\,25-\,\,\,\,\,\,1=\,\,\,24} φ ( 117 , 6 ) = φ ( 117 , 5 ) − φ ( 9 , 5 ) = 26 − 1 = 25 {\displaystyle \varphi (117,\,\,\,6)=\varphi (117,\,\,\,5)-\varphi (\,\,\,9,\,\,\,5)=\,\,\,26-\,\,\,\,\,\,1=\,\,\,25} φ ( 117 , 5 ) = φ ( 117 , 4 ) − φ ( 10 , 4 ) = 27 − 1 = 26 {\displaystyle \varphi (117,\,\,\,5)=\varphi (117,\,\,\,4)-\varphi (10,\,\,\,4)=\,\,\,27-\,\,\,\,\,\,1=\,\,\,26} φ ( 117 , 4 ) = φ ( 117 , 3 ) − φ ( 16 , 3 ) = 31 − 4 = 27 {\displaystyle \varphi (117,\,\,\,4)=\varphi (117,\,\,\,3)-\varphi (16,\,\,\,3)=\,\,\,31-\,\,\,\,\,\,4=\,\,\,27} φ ( 117 , 3 ) = φ ( 117 , 2 ) − φ ( 39 , 1 ) = 59 − 20 = 39 {\displaystyle \varphi (117,\,\,\,3)=\varphi (117,\,\,\,2)-\varphi (39,\,\,\,1)=\,\,\,59-\,\,\,20=\,\,\,39} φ ( 23 , 2 ) = φ ( 23 , 1 ) − φ ( 7 , 1 ) = 12 − 4 = 8 {\displaystyle \varphi (\,\,\,23,\,\,\,2)=\varphi (\,\,\,23,\,\,\,1)-\varphi (\,\,\,\,\,\,7,1)=\,\,\,12-\,\,\,\,\,\,4=\,\,\,\,\,\,8}
φ ( 16 , 3 ) = φ ( 16 , 2 ) − φ ( 3 , 2 ) = 5 − 1 = 4 {\displaystyle \varphi (\,\,\,16,\,\,\,3)=\varphi (\,\,\,16,\,\,\,2)-\varphi (\,\,\,\,\,\,3,2)=\,\,\,\,\,\,5-\,\,\,\,\,\,1=\,\,\,\,\,\,4} φ ( 16 , 2 ) = φ ( 16 , 1 ) − φ ( 5 , 1 ) = 8 − 3 = 5 {\displaystyle \varphi (\,\,\,16,\,\,\,2)=\varphi (\,\,\,16,\,\,\,1)-\varphi (\,\,\,\,\,\,5,1)=\,\,\,\,\,\,8-\,\,\,\,\,\,3=\,\,\,\,\,\,5}
φ ( 93 , 9 ) = φ ( 93 , 8 ) − φ ( 4 , 8 ) = 17 − 1 = 16 {\displaystyle \varphi (\,\,\,93,\,\,\,9)=\varphi (\,\,\,93,\,\,\,8)-\varphi (\,\,\,\,\,\,4,8)=\,\,\,17-\,\,\,\,\,\,1=\,\,\,16} φ ( 93 , 8 ) = φ ( 93 , 7 ) − φ ( 4 , 7 ) = 18 − 1 = 17 {\displaystyle \varphi (\,\,\,93,\,\,\,8)=\varphi (\,\,\,93,\,\,\,7)-\varphi (\,\,\,\,\,\,4,7)=\,\,\,18-\,\,\,\,\,\,1=\,\,\,17} φ ( 93 , 7 ) = φ ( 93 , 6 ) − φ ( 5 , 6 ) = 19 − 1 = 18 {\displaystyle \varphi (\,\,\,93,\,\,\,7)=\varphi (\,\,\,93,\,\,\,6)-\varphi (\,\,\,\,\,\,5,6)=\,\,\,19-\,\,\,\,\,\,1=\,\,\,18} [19] φ ( 93 , 6 ) = φ ( 93 , 5 ) − φ ( 7 , 5 ) = 20 − 1 = 19 {\displaystyle \varphi (\,\,\,93,\,\,\,6)=\varphi (\,\,\,93,\,\,\,5)-\varphi (\,\,\,\,\,\,7,5)=\,\,\,20-\,\,\,\,\,\,1=\,\,\,19} φ ( 93 , 5 ) = φ ( 93 , 4 ) − φ ( 8 , 4 ) = 21 − 1 = 20 {\displaystyle \varphi (\,\,\,93,\,\,\,5)=\varphi (\,\,\,93,\,\,\,4)-\varphi (\,\,\,\,\,\,8,4)=\,\,\,21-\,\,\,\,\,\,1=\,\,\,20} φ ( 93 , 4 ) = φ ( 93 , 3 ) − φ ( 13 , 3 ) = 25 − 4 = 21 {\displaystyle \varphi (\,\,\,93,\,\,\,4)=\varphi (\,\,\,93,\,\,\,3)-\varphi (\,\,\,13,3)=\,\,\,25-\,\,\,\,\,\,4=\,\,\,21} φ ( 93 , 3 ) = φ ( 93 , 2 ) − φ ( 18 , 2 ) = 31 − 6 = 25 {\displaystyle \varphi (\,\,\,93,\,\,\,3)=\varphi (\,\,\,93,\,\,\,2)-\varphi (\,\,\,18,2)=\,\,\,31-\,\,\,\,\,\,6=\,\,\,25} φ ( 93 , 2 ) = φ ( 93 , 1 ) − φ ( 31 , 1 ) = 47 − 16 = 31 {\displaystyle \varphi (\,\,\,93,\,\,\,2)=\varphi (\,\,\,93,\,\,\,1)-\varphi (\,\,\,31,1)=\,\,\,47-\,\,\,16=\,\,\,31} φ ( 18 , 2 ) = φ ( 18 , 1 ) − φ ( 6 , 1 ) = 9 − 3 {\displaystyle \varphi (\,\,\,18,\,\,\,2)=\varphi (18,\,\,\,1)-\varphi (6,1)=\,\,\,\,\,\,9-\,\,\,\,\,\,3}
6 {\displaystyle \,\,\,\,\,\,6}
φ ( 13 , 3 ) = φ ( 13 , 2 ) − φ ( 2 , 2 ) = 5 − 1 {\displaystyle \varphi (\,\,\,13,\,\,\,3)=\varphi (13,\,\,\,2)-\varphi (2,2)=\,\,\,\,\,\,5-\,\,\,\,\,\,1} φ ( 13 , 2 ) = φ ( 13 , 1 ) − φ ( 4 , 1 ) = 7 − 2 {\displaystyle \varphi (\,\,\,13,\,\,\,2)=\varphi (13,\,\,\,1)-\varphi (4,1)=\,\,\,\,\,\,7-\,\,\,\,\,\,2}
4 {\displaystyle \,\,\,\,\,\,4} 5 {\displaystyle \,\,\,\,\,\,5}
φ ( 87 , 10 ) = φ ( 87 , 9 ) − φ ( 3 , 9 ) = 15 − 1 = 14 {\displaystyle \varphi (\,\,\,87,10)=\varphi (\,\,\,87,\,\,\,9)-\varphi (\,\,\,3,\,\,\,9)=\,\,\,15-\,\,\,\,\,\,1=\,\,\,14} φ ( 87 , 9 ) = φ ( 87 , 8 ) − φ ( 3 , 8 ) = 16 − 1 = 15 {\displaystyle \varphi (\,\,\,87,\,\,\,9)=\varphi (\,\,\,87,\,\,\,8)-\varphi (\,\,\,3,\,\,\,8)=\,\,\,16-\,\,\,\,\,\,1=\,\,\,15} φ ( 87 , 8 ) = φ ( 87 , 7 ) − φ ( 4 , 7 ) = 17 − 1 = 16 {\displaystyle \varphi (\,\,\,87,\,\,\,8)=\varphi (\,\,\,87,\,\,\,7)-\varphi (\,\,\,4,\,\,\,7)=\,\,\,17-\,\,\,\,\,\,1=\,\,\,16} φ ( 87 , 7 ) = φ ( 87 , 6 ) − φ ( 5 , 6 ) = 18 − 1 = 17 {\displaystyle \varphi (\,\,\,87,\,\,\,7)=\varphi (\,\,\,87,\,\,\,6)-\varphi (\,\,\,5,\,\,\,6)=\,\,\,18-\,\,\,\,\,\,1=\,\,\,17} φ ( 87 , 6 ) = φ ( 87 , 5 ) − φ ( 6 , 5 ) = 19 − 1 = 18 {\displaystyle \varphi (\,\,\,87,\,\,\,6)=\varphi (\,\,\,87,\,\,\,5)-\varphi (\,\,\,6,\,\,\,5)=\,\,\,19-\,\,\,\,\,\,1=\,\,\,18} φ ( 87 , 5 ) = φ ( 87 , 4 ) − φ ( 7 , 4 ) = 20 − 1 = 19 {\displaystyle \varphi (\,\,\,87,\,\,\,5)=\varphi (\,\,\,87,\,\,\,4)-\varphi (\,\,\,7,\,\,\,4)=\,\,\,20-\,\,\,\,\,\,1=\,\,\,19} φ ( 87 , 4 ) = φ ( 87 , 3 ) − φ ( 12 , 3 ) = 23 − 3 = 20 {\displaystyle \varphi (\,\,\,87,\,\,\,4)=\varphi (\,\,\,87,\,\,\,3)-\varphi (12,\,\,\,3)=\,\,\,23-\,\,\,\,\,\,3=\,\,\,20} φ ( 87 , 3 ) = φ ( 87 , 2 ) − φ ( 17 , 2 ) = 29 − 6 = 23 {\displaystyle \varphi (\,\,\,87,\,\,\,3)=\varphi (\,\,\,87,\,\,\,2)-\varphi (17,\,\,\,2)=\,\,\,29-\,\,\,\,\,\,6=\,\,\,23} φ ( 87 , 2 ) = φ ( 87 , 1 ) − φ ( 29 , 1 ) = 44 − 15 = 29 {\displaystyle \varphi (\,\,\,87,\,\,\,2)=\varphi (\,\,\,87,\,\,\,1)-\varphi (29,\,\,\,1)=\,\,\,44-\,\,\,15=\,\,\,29} φ ( 17 , 2 ) = φ ( 17 , 1 ) − φ ( 5 , 1 ) = 9 − 3 {\displaystyle \varphi (\,\,\,17,\,\,\,2)=\varphi (17,\,\,\,1)-\varphi (5,1)=\,\,\,\,\,\,9-\,\,\,\,\,\,3}
φ ( 12 , 3 ) = φ ( 12 , 2 ) − φ ( 2 , 2 ) = 4 − 1 {\displaystyle \varphi (\,\,\,12,\,\,\,3)=\varphi (12,\,\,\,2)-\varphi (2,2)=\,\,\,\,\,\,4-\,\,\,\,\,\,1} φ ( 12 , 2 ) = φ ( 12 , 1 ) − φ ( 4 , 1 ) = 6 − 2 {\displaystyle \varphi (\,\,\,12,\,\,\,2)=\varphi (12,\,\,\,1)-\varphi (4,1)=\,\,\,\,\,\,6-\,\,\,\,\,\,2}
3 {\displaystyle \,\,\,\,\,\,3} 4 {\displaystyle \,\,\,\,\,\,4}
φ ( 2439 , 12 ) = φ ( 2439 , 11 ) − φ ( 65 , 11 ) = 367 − 8 {\displaystyle \varphi (2439,12)=\varphi (2439,11)-\varphi (\,\,\,65,11)=\,\,\,367-\,\,\,\,\,\,8} φ ( 2439 , 11 ) = φ ( 2439 , 10 ) − φ ( 78 , 10 ) = 379 − 12 {\displaystyle \varphi (2439,11)=\varphi (2439,10)-\varphi (\,\,\,78,10)=\,\,\,379-\,\,\,12} φ ( 2439 , 10 ) = φ ( 2439 , 9 ) − φ ( 84 , 9 ) = 394 − 15 {\displaystyle \varphi (2439,10)=\varphi (2439,\,\,\,9)-\varphi (\,\,\,84,\,\,\,9)=\,\,\,394-\,\,\,15} φ ( 2439 , 9 ) = φ ( 2439 , 8 ) − φ ( 106 , 8 ) = 414 − 20 {\displaystyle \varphi (2439,\,\,\,9)=\varphi (2439,\,\,\,8)-\varphi (106,\,\,\,8)=\,\,\,414-\,\,\,20} φ ( 2439 , 8 ) = φ ( 2439 , 7 ) − φ ( 128 , 7 ) = 439 − 25 {\displaystyle \varphi (2439,\,\,\,8)=\varphi (2439,\,\,\,7)-\varphi (128,\,\,\,7)=\,\,\,439-\,\,\,25} φ ( 2439 , 7 ) = φ ( 2439 , 6 ) − φ ( 143 , 6 ) = 468 − 29 {\displaystyle \varphi (2439,\,\,\,7)=\varphi (2439,\,\,\,6)-\varphi (143,\,\,\,6)=\,\,\,468-\,\,\,29} φ ( 2439 , 6 ) = φ ( 2439 , 5 ) − φ ( 187 , 5 ) = 507 − 39 {\displaystyle \varphi (2439,\,\,\,6)=\varphi (2439,\,\,\,5)-\varphi (187,\,\,\,5)=\,\,\,507-\,\,\,39} φ ( 2439 , 5 ) = φ ( 2439 , 4 ) − φ ( 221 , 4 ) = 557 − 50 {\displaystyle \varphi (2439,\,\,\,5)=\varphi (2439,\,\,\,4)-\varphi (221,\,\,\,4)=\,\,\,557-\,\,\,50} φ ( 2439 , 4 ) = φ ( 2439 , 3 ) − φ ( 348 , 3 ) = 650 − 93 {\displaystyle \varphi (2439,\,\,\,4)=\varphi (2439,\,\,\,3)-\varphi (348,\,\,\,3)=\,\,\,650-\,\,\,93} φ ( 2439 , 3 ) = φ ( 2439 , 2 ) − φ ( 487 , 2 ) = 813 − 163 {\displaystyle \varphi (2439,\,\,\,3)=\varphi (2439,\,\,\,2)-\varphi (487,\,\,\,2)=\,\,\,813-163} φ ( 2439 , 2 ) = φ ( 2439 , 1 ) − φ ( 813 , 1 ) = 1220 − 407 {\displaystyle \varphi (2439,\,\,\,2)=\varphi (2439,\,\,\,1)-\varphi (813,\,\,\,1)=1220-407} φ ( 487 , 2 ) = φ ( 487 , 1 ) − φ ( 162 , 1 ) = 244 − 81 {\displaystyle \varphi (487,\,\,\,2)=\varphi (487,\,\,\,1)-\varphi (162,1)=244-\,\,\,81}
= {\displaystyle =} = {\displaystyle =} = {\displaystyle =} = {\displaystyle =} = {\displaystyle =} = {\displaystyle =} = {\displaystyle =} = {\displaystyle =} = {\displaystyle =} = {\displaystyle =} = {\displaystyle =} = {\displaystyle =}
359 {\displaystyle 359} 367 {\displaystyle 367} 379 {\displaystyle 379} 394 {\displaystyle 394} 414 {\displaystyle 414} 439 {\displaystyle 439} 468 {\displaystyle 468} 507 {\displaystyle 507} 557 {\displaystyle 557} 650 {\displaystyle 650} 813 {\displaystyle 813} 163 {\displaystyle 163}
φ ( 348 , 3 ) = φ ( 348 , 2 ) − φ ( 69 , 2 ) = 116 − 23 {\displaystyle \varphi (\,\,\,348,\,\,\,3)=\varphi (348,\,\,\,2)-\varphi (\,\,\,69,2)=116-\,\,\,23} φ ( 348 , 2 ) = φ ( 348 , 1 ) − φ ( 116 , 1 ) = 174 − 58 {\displaystyle \varphi (\,\,\,348,\,\,\,2)=\varphi (348,\,\,\,1)-\varphi (116,1)=174-\,\,\,58} φ ( 69 , 2 ) = φ ( 69 , 1 ) − φ ( 23 , 1 ) = 35 − 12 {\displaystyle \varphi (69,\,\,\,2)=\varphi (69,\,\,\,1)-\varphi (\,\,\,23,1)=\,\,\,35-\,\,\,12}
93 {\displaystyle \,\,\,93} 116 {\displaystyle 116} 23 {\displaystyle \,\,\,23}
φ ( 221 , 4 ) = φ ( 221 , 3 ) − φ ( 31 , 3 ) = 59 − 9 = 50 {\displaystyle \varphi (221,\,\,\,4)=\varphi (221,\,\,\,3)-\varphi (31,\,\,\,3)=\,\,\,59-\,\,\,\,\,\,9=\,\,\,50} φ ( 221 , 3 ) = φ ( 221 , 2 ) − φ ( 42 , 2 ) = 74 − 15 = 59 {\displaystyle \varphi (221,\,\,\,3)=\varphi (221,\,\,\,2)-\varphi (42,\,\,\,2)=\,\,\,74-\,\,\,15=\,\,\,59} φ ( 221 , 2 ) = φ ( 221 , 1 ) − φ ( 73 , 1 ) = 111 − 37 = 74 {\displaystyle \varphi (221,\,\,\,2)=\varphi (221,\,\,\,1)-\varphi (73,\,\,\,1)=111-\,\,\,37=\,\,\,74} φ ( 44 , 2 ) = φ ( 44 , 1 ) − φ ( 14 , 1 ) = 22 − 7 = 15 {\displaystyle \varphi (\,\,\,44,\,\,\,2)=\varphi (44,\,\,\,1)-\varphi (14,1)=\,\,\,22-\,\,\,\,\,\,7=\,\,\,15}
φ ( 31 , 3 ) = φ ( 31 , 2 ) − φ ( 6 , 2 ) = 11 − 2 = 9 {\displaystyle \varphi (31,\,\,\,3)=\varphi (31,\,\,\,2)-\varphi (\,\,\,6,2)=\,\,\,11-\,\,\,\,\,\,2=\,\,\,\,\,\,9} φ ( 31 , 2 ) = φ ( 31 , 1 ) − φ ( 10 , 1 ) = 16 − 5 = 11 {\displaystyle \varphi (31,\,\,\,2)=\varphi (31,\,\,\,1)-\varphi (10,1)=\,\,\,16-\,\,\,\,\,\,5=\,\,\,11} φ ( 6 , 2 ) = φ ( 6 , 1 ) − φ ( 2 , 1 ) = 3 − 1 = 2 {\displaystyle \varphi (6,\,\,\,2)=\varphi (6,\,\,\,1)-\varphi (\,\,\,2,1)=\,\,\,\,\,\,3-\,\,\,\,\,\,1=\,\,\,\,\,\,2}
φ ( 187 , 5 ) = φ ( 187 , 4 ) − φ ( 17 , 4 ) = 43 − 4 = 39 {\displaystyle \varphi (187,\,\,\,5)=\varphi (187,\,\,\,4)-\varphi (17,\,\,\,4)=\,\,\,43-\,\,\,\,\,\,4=\,\,\,39} φ ( 187 , 4 ) = φ ( 187 , 3 ) − φ ( 26 , 3 ) = 50 − 7 = 43 {\displaystyle \varphi (187,\,\,\,4)=\varphi (187,\,\,\,3)-\varphi (26,\,\,\,3)=\,\,\,50-\,\,\,\,\,\,7=\,\,\,43} φ ( 187 , 3 ) = φ ( 187 , 2 ) − φ ( 37 , 2 ) = 63 − 13 = 50 {\displaystyle \varphi (187,\,\,\,3)=\varphi (187,\,\,\,2)-\varphi (37,\,\,\,2)=\,\,\,63-\,\,\,13=\,\,\,50} φ ( 187 , 2 ) = φ ( 187 , 1 ) − φ ( 62 , 1 ) = 94 − 31 = 63 {\displaystyle \varphi (187,\,\,\,2)=\varphi (187,\,\,\,1)-\varphi (62,\,\,\,1)=\,\,\,94-\,\,\,31=\,\,\,63} φ ( 37 , 2 ) = φ ( 37 , 1 ) − φ ( 12 , 1 ) = 19 − 6 = 13 {\displaystyle \varphi (37,\,\,\,2)=\varphi (37,\,\,\,1)-\varphi (12,1)=\,\,\,19-\,\,\,\,\,\,6=\,\,\,13}
φ ( 26 , 3 ) = φ ( 26 , 2 ) − φ ( 5 , 2 ) = 9 − 2 = 7 {\displaystyle \varphi (26,\,\,\,3)=\varphi (26,\,\,\,2)-\varphi (5,\,\,\,2)=\,\,\,\,\,\,9-\,\,\,\,\,\,2=\,\,\,\,\,\,7} φ ( 26 , 2 ) = φ ( 26 , 1 ) − φ ( 8 , 1 ) = 13 − 4 = 9 {\displaystyle \varphi (26,\,\,\,2)=\varphi (26,\,\,\,1)-\varphi (8,\,\,\,1)=\,\,\,13-\,\,\,\,\,\,4=\,\,\,\,\,\,9} φ ( 5 , 2 ) = φ ( 5 , 1 ) − φ ( 1 , 1 ) = 3 − 1 = 2 {\displaystyle \varphi (5,\,\,\,2)=\varphi (\,\,\,5,\,\,\,1)-\varphi (1,1)=\,\,\,\,\,\,3-\,\,\,\,\,\,1=\,\,\,\,\,\,2}
φ ( 17 , 4 ) = φ ( 17 , 3 ) − φ ( 2 , 3 ) = 5 − 1 = 4 {\displaystyle \varphi (17,\,\,\,4)=\varphi (17,\,\,\,3)-\varphi (2,\,\,\,3)=\,\,\,\,\,\,5-\,\,\,\,\,\,1=\,\,\,\,\,\,4} φ ( 17 , 3 ) = φ ( 17 , 2 ) − φ ( 3 , 2 ) = 6 − 1 = 5 {\displaystyle \varphi (17,\,\,\,3)=\varphi (17,\,\,\,2)-\varphi (3,\,\,\,2)=\,\,\,\,\,\,6-\,\,\,\,\,\,1=\,\,\,\,\,\,5} φ ( 17 , 2 ) = φ ( 17 , 1 ) − φ ( 5 , 1 ) = 9 − 3 = 6 {\displaystyle \varphi (17,\,\,\,2)=\varphi (17,\,\,\,1)-\varphi (5,\,\,\,1)=\,\,\,\,\,\,9-\,\,\,\,\,\,3=\,\,\,\,\,\,6}
φ ( 143 , 6 ) = φ ( 143 , 5 ) − φ ( 11 , 5 ) = 30 − 1 = 29 {\displaystyle \varphi (143,\,\,\,6)=\varphi (143,\,\,\,5)-\varphi (11,5)=\,\,\,30-\,\,\,\,\,\,1=\,\,\,29} φ ( 143 , 5 ) = φ ( 143 , 4 ) − φ ( 13 , 4 ) = 33 − 3 = 30 {\displaystyle \varphi (143,\,\,\,5)=\varphi (143,\,\,\,4)-\varphi (13,4)=\,\,\,33-\,\,\,\,\,\,3=\,\,\,30} φ ( 143 , 4 ) = φ ( 143 , 3 ) − φ ( 20 , 3 ) = 39 − 6 = 33 {\displaystyle \varphi (143,\,\,\,4)=\varphi (143,\,\,\,3)-\varphi (20,3)=\,\,\,39-\,\,\,\,\,\,6=\,\,\,33} φ ( 143 , 3 ) = φ ( 143 , 2 ) − φ ( 28 , 2 ) = 48 − 9 = 39 {\displaystyle \varphi (143,\,\,\,3)=\varphi (143,\,\,\,2)-\varphi (28,2)=\,\,\,48-\,\,\,\,\,\,9=\,\,\,39} φ ( 143 , 2 ) = φ ( 143 , 1 ) − φ ( 47 , 1 ) = 72 − 24 = 48 {\displaystyle \varphi (143,\,\,\,2)=\varphi (143,\,\,\,1)-\varphi (47,1)=\,\,\,72-\,\,\,24=\,\,\,48} φ ( 28 , 2 ) = φ ( 28 , 1 ) − φ ( 9 , 1 ) = 14 − 5 = 9 {\displaystyle \varphi (28,\,\,\,2)=\varphi (28,\,\,\,1)-\varphi (9,1)=\,\,\,14-\,\,\,\,\,\,5=\,\,\,9}
φ ( 20 , 3 ) = φ ( 20 , 2 ) − φ ( 4 , 2 ) = 7 − 1 = 6 {\displaystyle \varphi (20,\,\,\,3)=\varphi (20,\,\,\,2)-\varphi (4,2)=\,\,\,\,\,\,7-\,\,\,\,\,\,1=\,\,\,\,\,\,6} φ ( 20 , 2 ) = φ ( 20 , 1 ) − φ ( 6 , 1 ) = 10 − 3 = 7 {\displaystyle \varphi (20,\,\,\,2)=\varphi (20,\,\,\,1)-\varphi (6,1)=\,\,\,10-\,\,\,\,\,\,3=\,\,\,\,\,\,7} φ ( 4 , 2 ) = φ ( 4 , 1 ) − φ ( 1 , 1 ) = 2 − 1 = 1 {\displaystyle \varphi (4,\,\,\,2)=\varphi (\,\,\,4,\,\,\,1)-\varphi (1,1)=\,\,\,\,\,\,2-\,\,\,\,\,\,1=\,\,\,\,\,\,1}
φ ( 13 , 4 ) = φ ( 13 , 3 ) − φ ( 1 , 3 ) = 4 − 1 = 3 {\displaystyle \varphi (13,\,\,\,4)=\varphi (13,\,\,\,3)-\varphi (1,\,\,\,3)=\,\,\,\,\,\,4-\,\,\,\,\,\,1=\,\,\,\,\,\,3} φ ( 13 , 3 ) = φ ( 13 , 2 ) − φ ( 2 , 2 ) = 5 − 1 = 4 {\displaystyle \varphi (13,\,\,\,3)=\varphi (13,\,\,\,2)-\varphi (2,\,\,\,2)=\,\,\,\,\,\,5-\,\,\,\,\,\,1=\,\,\,\,\,\,4} φ ( 13 , 2 ) = φ ( 13 , 1 ) − φ ( 4 , 1 ) = 7 − 2 = 5 {\displaystyle \varphi (13,\,\,\,2)=\varphi (13,\,\,\,1)-\varphi (4,\,\,\,1)=\,\,\,\,\,\,7-\,\,\,\,\,\,2=\,\,\,\,\,\,5}
φ ( 128 , 7 ) = φ ( 128 , 6 ) − φ ( 7 , 6 ) = 26 − 1 = 25 {\displaystyle \varphi (128,\,\,\,7)=\varphi (128,\,\,\,6)-\varphi (\,\,\,7,\,\,\,6)=\,\,\,26-\,\,\,\,\,\,1=\,\,\,25} φ ( 128 , 6 ) = φ ( 128 , 5 ) − φ ( 9 , 5 ) = 27 − 1 = 26 {\displaystyle \varphi (128,\,\,\,6)=\varphi (128,\,\,\,5)-\varphi (\,\,\,9,\,\,\,5)=\,\,\,27-\,\,\,\,\,\,1=\,\,\,26} φ ( 128 , 5 ) = φ ( 128 , 4 ) − φ ( 11 , 4 ) = 29 − 2 = 27 {\displaystyle \varphi (128,\,\,\,5)=\varphi (128,\,\,\,4)-\varphi (11,\,\,\,4)=\,\,\,29-\,\,\,\,\,\,2=\,\,\,27} φ ( 128 , 4 ) = φ ( 128 , 3 ) − φ ( 18 , 3 ) = 34 − 5 = 29 {\displaystyle \varphi (128,\,\,\,4)=\varphi (128,\,\,\,3)-\varphi (18,\,\,\,3)=\,\,\,34-\,\,\,\,\,\,5=\,\,\,29} [21] φ ( 128 , 3 ) = φ ( 128 , 2 ) − φ ( 25 , 2 ) = 43 − 9 = 34 {\displaystyle \varphi (128,\,\,\,3)=\varphi (128,\,\,\,2)-\varphi (25,\,\,\,2)=\,\,\,43-\,\,\,\,\,\,9=\,\,\,34} φ ( 128 , 2 ) = φ ( 128 , 1 ) − φ ( 42 , 1 ) = 62 − 21 = 43 {\displaystyle \varphi (128,\,\,\,2)=\varphi (128,\,\,\,1)-\varphi (42,\,\,\,1)=\,\,\,62-\,\,\,21=\,\,\,43} φ ( 25 , 2 ) = φ ( 25 , 1 ) − φ ( 8 , 1 ) = 13 − 4 {\displaystyle \varphi (\,\,\,25,\,\,\,2)=\varphi (25,\,\,\,1)-\varphi (8,1)=\,\,\,13-\,\,\,\,\,\,4}
φ ( 18 , 3 ) = φ ( 18 , 2 ) − φ ( 3 , 2 ) = 6 − 1 {\displaystyle \varphi (\,\,\,18,\,\,\,3)=\varphi (18,\,\,\,2)-\varphi (3,2)=\,\,\,\,\,\,6-\,\,\,\,\,\,1} φ ( 18 , 2 ) = φ ( 18 , 1 ) − φ ( 6 , 1 ) = 9 − 3 {\displaystyle \varphi (\,\,\,18,\,\,\,2)=\varphi (18,\,\,\,1)-\varphi (6,1)=\,\,\,\,\,\,9-\,\,\,\,\,\,3}
5 {\displaystyle \,\,\,\,\,\,5} 6 {\displaystyle \,\,\,\,\,\,6}
φ ( 11 , 4 ) = φ ( 11 , 3 ) − φ ( 1 , 3 ) = 3 − 1 {\displaystyle \varphi (\,\,\,11,\,\,\,4)=\varphi (11,\,\,\,3)-\varphi (1,3)=\,\,\,\,\,\,3-\,\,\,\,\,\,1} φ ( 11 , 3 ) = φ ( 11 , 2 ) − φ ( 2 , 2 ) = 4 − 1 {\displaystyle \varphi (\,\,\,11,\,\,\,3)=\varphi (11,\,\,\,2)-\varphi (2,2)=\,\,\,\,\,\,4-\,\,\,\,\,\,1} φ ( 11 , 2 ) = φ ( 11 , 1 ) − φ ( 3 , 1 ) = 6 − 2 {\displaystyle \varphi (\,\,\,11,\,\,\,2)=\varphi (11,\,\,\,1)-\varphi (3,1)=\,\,\,\,\,\,6-\,\,\,\,\,\,2}
2 {\displaystyle \,\,\,\,\,\,2} 3 {\displaystyle \,\,\,\,\,\,3} 4 {\displaystyle \,\,\,\,\,\,4}
φ ( 106 , 8 ) = φ ( 106 , 7 ) − φ ( 5 , 7 ) = 21 − 1 = 20 {\displaystyle \varphi (106,\,\,\,8)=\varphi (106,\,\,\,7)-\varphi (\,\,\,5,\,\,\,7)=\,\,\,21-\,\,\,\,\,\,1=\,\,\,20} φ ( 106 , 7 ) = φ ( 106 , 6 ) − φ ( 6 , 6 ) = 22 − 1 = 21 {\displaystyle \varphi (106,\,\,\,7)=\varphi (106,\,\,\,6)-\varphi (\,\,\,6,\,\,\,6)=\,\,\,22-\,\,\,\,\,\,1=\,\,\,21} φ ( 106 , 6 ) = φ ( 106 , 5 ) − φ ( 8 , 5 ) = 23 − 1 = 22 {\displaystyle \varphi (106,\,\,\,6)=\varphi (106,\,\,\,5)-\varphi (\,\,\,8,\,\,\,5)=\,\,\,23-\,\,\,\,\,\,1=\,\,\,22} φ ( 106 , 5 ) = φ ( 106 , 4 ) − φ ( 9 , 4 ) = 24 − 1 = 23 {\displaystyle \varphi (106,\,\,\,5)=\varphi (106,\,\,\,4)-\varphi (\,\,\,9,\,\,\,4)=\,\,\,24-\,\,\,\,\,\,1=\,\,\,23} φ ( 106 , 4 ) = φ ( 106 , 3 ) − φ ( 15 , 3 ) = 28 − 4 = 24 {\displaystyle \varphi (106,\,\,\,4)=\varphi (106,\,\,\,3)-\varphi (15,\,\,\,3)=\,\,\,28-\,\,\,\,\,\,4=\,\,\,24} φ ( 106 , 3 ) = φ ( 106 , 2 ) − φ ( 21 , 2 ) = 35 − 7 = 28 {\displaystyle \varphi (106,\,\,\,3)=\varphi (106,\,\,\,2)-\varphi (21,\,\,\,2)=\,\,\,35-\,\,\,\,\,\,7=\,\,\,28} φ ( 106 , 2 ) = φ ( 106 , 1 ) − φ ( 35 , 1 ) = 53 − 18 = 35 {\displaystyle \varphi (106,\,\,\,2)=\varphi (106,\,\,\,1)-\varphi (35,\,\,\,1)=\,\,\,53-\,\,\,18=\,\,\,35} φ ( 21 , 2 ) = φ ( 21 , 1 ) − φ ( 7 , 1 ) = 11 − 4 {\displaystyle \varphi (\,\,\,21,\,\,\,2)=\varphi (21,\,\,\,1)-\varphi (7,1)=\,\,\,11-\,\,\,\,\,\,4}
7 {\displaystyle \,\,\,\,\,\,7}
φ ( 15 , 3 ) = φ ( 15 , 2 ) − φ ( 3 , 2 ) = 5 − 1 {\displaystyle \varphi (\,\,\,15,\,\,\,3)=\varphi (15,\,\,\,2)-\varphi (3,2)=\,\,\,\,\,\,5-\,\,\,\,\,\,1} φ ( 15 , 2 ) = φ ( 15 , 1 ) − φ ( 5 , 1 ) = 8 − 3 {\displaystyle \varphi (\,\,\,15,\,\,\,2)=\varphi (15,\,\,\,1)-\varphi (5,1)=\,\,\,\,\,\,8-\,\,\,\,\,\,3}
φ ( 84 , 9 ) = φ ( 84 , 8 ) − φ ( 3 , 8 ) = 16 − 1 = 15 {\displaystyle \varphi (\,\,\,84,\,\,\,9)=\varphi (\,\,\,84,\,\,\,8)-\varphi (\,\,\,3,\,\,\,8)=\,\,\,16-\,\,\,\,\,\,1=\,\,\,15} φ ( 84 , 8 ) = φ ( 84 , 7 ) − φ ( 4 , 7 ) = 17 − 1 = 16 {\displaystyle \varphi (\,\,\,84,\,\,\,8)=\varphi (\,\,\,84,\,\,\,7)-\varphi (\,\,\,4,\,\,\,7)=\,\,\,17-\,\,\,\,\,\,1=\,\,\,16} φ ( 84 , 7 ) = φ ( 84 , 6 ) − φ ( 4 , 6 ) = 18 − 1 = 17 {\displaystyle \varphi (\,\,\,84,\,\,\,7)=\varphi (\,\,\,84,\,\,\,6)-\varphi (\,\,\,4,\,\,\,6)=\,\,\,18-\,\,\,\,\,\,1=\,\,\,17} φ ( 84 , 6 ) = φ ( 84 , 5 ) − φ ( 6 , 5 ) = 19 − 1 = 18 {\displaystyle \varphi (\,\,\,84,\,\,\,6)=\varphi (\,\,\,84,\,\,\,5)-\varphi (\,\,\,6,\,\,\,5)=\,\,\,19-\,\,\,\,\,\,1=\,\,\,18} φ ( 84 , 5 ) = φ ( 84 , 4 ) − φ ( 7 , 4 ) = 20 − 1 = 19 {\displaystyle \varphi (\,\,\,84,\,\,\,5)=\varphi (\,\,\,84,\,\,\,4)-\varphi (\,\,\,7,\,\,\,4)=\,\,\,20-\,\,\,\,\,\,1=\,\,\,19} φ ( 84 , 4 ) = φ ( 84 , 3 ) − φ ( 12 , 3 ) = 23 − 3 = 20 {\displaystyle \varphi (\,\,\,84,\,\,\,4)=\varphi (\,\,\,84,\,\,\,3)-\varphi (12,\,\,\,3)=\,\,\,23-\,\,\,\,\,\,3=\,\,\,20} φ ( 84 , 3 ) = φ ( 84 , 2 ) − φ ( 16 , 2 ) = 28 − 5 = 23 {\displaystyle \varphi (\,\,\,84,\,\,\,3)=\varphi (\,\,\,84,\,\,\,2)-\varphi (16,\,\,\,2)=\,\,\,28-\,\,\,\,\,\,5=\,\,\,23} φ ( 84 , 2 ) = φ ( 84 , 1 ) − φ ( 28 , 1 ) = 42 − 14 = 28 {\displaystyle \varphi (\,\,\,84,\,\,\,2)=\varphi (\,\,\,84,\,\,\,1)-\varphi (28,\,\,\,1)=\,\,\,42-\,\,\,14=\,\,\,28} φ ( 16 , 2 ) = φ ( 16 , 1 ) − φ ( 5 , 1 ) = 8 − 3 {\displaystyle \varphi (\,\,\,16,\,\,\,2)=\varphi (16,\,\,\,1)-\varphi (5,1)=\,\,\,\,\,\,8-\,\,\,\,\,\,3}
5 {\displaystyle \,\,\,\,\,\,5}
φ ( 12 , 3 ) = φ ( 12 , 2 ) − φ ( 2 , 2 ) = 4 − 1 {\displaystyle \varphi (\,\,\,12,3)=\varphi (12,2)-\varphi (2,2)=\,\,\,\,\,\,4-\,\,\,\,\,\,1} φ ( 12 , 2 ) = φ ( 12 , 1 ) − φ ( 4 , 1 ) = 6 − 2 {\displaystyle \varphi (\,\,\,12,2)=\varphi (12,1)-\varphi (4,1)=\,\,\,\,\,\,6-\,\,\,\,\,\,2}
φ ( 78 , 10 ) = φ ( 78 , 9 ) − φ ( 2 , 9 ) = 13 − 1 = 12 {\displaystyle \varphi (\,\,\,78,10)=\varphi (\,\,\,78,\,\,\,9)-\varphi (\,\,\,2,\,\,\,9)=\,\,\,13-\,\,\,\,\,\,1=\,\,\,12} φ ( 78 , 9 ) = φ ( 78 , 8 ) − φ ( 3 , 8 ) = 14 − 1 = 13 {\displaystyle \varphi (\,\,\,78,\,\,\,9)=\varphi (\,\,\,78,\,\,\,8)-\varphi (\,\,\,3,\,\,\,8)=\,\,\,14-\,\,\,\,\,\,1=\,\,\,13} φ ( 78 , 8 ) = φ ( 78 , 7 ) − φ ( 4 , 7 ) = 15 − 1 = 14 {\displaystyle \varphi (\,\,\,78,\,\,\,8)=\varphi (\,\,\,78,\,\,\,7)-\varphi (\,\,\,4,\,\,\,7)=\,\,\,15-\,\,\,\,\,\,1=\,\,\,14} φ ( 78 , 7 ) = φ ( 78 , 6 ) − φ ( 4 , 6 ) = 16 − 1 = 15 {\displaystyle \varphi (\,\,\,78,\,\,\,7)=\varphi (\,\,\,78,\,\,\,6)-\varphi (\,\,\,4,\,\,\,6)=\,\,\,16-\,\,\,\,\,\,1=\,\,\,15} φ ( 78 , 6 ) = φ ( 78 , 5 ) − φ ( 6 , 5 ) = 17 − 1 = 16 {\displaystyle \varphi (\,\,\,78,\,\,\,6)=\varphi (\,\,\,78,\,\,\,5)-\varphi (\,\,\,6,\,\,\,5)=\,\,\,17-\,\,\,\,\,\,1=\,\,\,16} φ ( 78 , 5 ) = φ ( 78 , 4 ) − φ ( 7 , 4 ) = 18 − 1 = 17 {\displaystyle \varphi (\,\,\,78,\,\,\,5)=\varphi (\,\,\,78,\,\,\,4)-\varphi (\,\,\,7,\,\,\,4)=\,\,\,18-\,\,\,\,\,\,1=\,\,\,17} [22] φ ( 78 , 4 ) = φ ( 78 , 3 ) − φ ( 11 , 3 ) = 21 − 3 = 18 {\displaystyle \varphi (\,\,\,78,\,\,\,4)=\varphi (\,\,\,78,\,\,\,3)-\varphi (\,\,\,11,\,\,\,3)=\,\,\,21-\,\,\,\,\,\,3=\,\,\,18} φ ( 78 , 3 ) = φ ( 78 , 2 ) − φ ( 15 , 2 ) = 26 − 5 = 21 {\displaystyle \varphi (\,\,\,78,\,\,\,3)=\varphi (\,\,\,78,\,\,\,2)-\varphi (\,\,\,15,\,\,\,2)=\,\,\,26-\,\,\,\,\,\,5=\,\,\,21} φ ( 78 , 2 ) = φ ( 78 , 1 ) − φ ( 26 , 1 ) = 39 − 13 = 26 {\displaystyle \varphi (\,\,\,78,\,\,\,2)=\varphi (\,\,\,78,\,\,\,1)-\varphi (\,\,\,26,\,\,\,1)=\,\,\,39-\,\,\,13=\,\,\,26} φ ( 15 , 2 ) = φ ( 15 , 1 ) − φ ( 5 , 1 ) = 8 − 3 {\displaystyle \varphi (\,\,\,15,\,\,\,2)=\varphi (15,\,\,\,1)-\varphi (5,1)=\,\,\,\,\,\,8-\,\,\,\,\,\,3}
φ ( 65 , 11 ) = φ ( 65 , 10 ) − φ ( 2 , 10 ) = 9 − 1 = 8 {\displaystyle \varphi (\,\,\,65,11)=\varphi (\,\,\,65,10)-\varphi (\,\,\,2,10)=\,\,\,\,\,\,9-\,\,\,\,\,\,1=\,\,\,\,\,\,8} φ ( 65 , 10 ) = φ ( 65 , 9 ) − φ ( 2 , 9 ) = 10 − 1 = 9 {\displaystyle \varphi (\,\,\,65,10)=\varphi (\,\,\,65,\,\,\,9)-\varphi (\,\,\,2,\,\,\,9)=\,\,\,10-\,\,\,\,\,\,1=\,\,\,\,\,\,9} φ ( 65 , 9 ) = φ ( 65 , 8 ) − φ ( 2 , 8 ) = 11 − 1 = 10 {\displaystyle \varphi (\,\,\,65,\,\,\,9)=\varphi (\,\,\,65,\,\,\,8)-\varphi (\,\,\,2,\,\,\,8)=\,\,\,11-\,\,\,\,\,\,1=\,\,\,10} φ ( 65 , 8 ) = φ ( 65 , 7 ) − φ ( 3 , 7 ) = 12 − 1 = 11 {\displaystyle \varphi (\,\,\,65,\,\,\,8)=\varphi (\,\,\,65,\,\,\,7)-\varphi (\,\,\,3,\,\,\,7)=\,\,\,12-\,\,\,\,\,\,1=\,\,\,11} φ ( 65 , 7 ) = φ ( 65 , 6 ) − φ ( 3 , 6 ) = 13 − 1 = 12 {\displaystyle \varphi (\,\,\,65,\,\,\,7)=\varphi (\,\,\,65,\,\,\,6)-\varphi (\,\,\,3,\,\,\,6)=\,\,\,13-\,\,\,\,\,\,1=\,\,\,12} φ ( 65 , 6 ) = φ ( 65 , 5 ) − φ ( 5 , 5 ) = 14 − 1 = 13 {\displaystyle \varphi (\,\,\,65,\,\,\,6)=\varphi (\,\,\,65,\,\,\,5)-\varphi (\,\,\,5,\,\,\,5)=\,\,\,14-\,\,\,\,\,\,1=\,\,\,13} φ ( 65 , 5 ) = φ ( 65 , 4 ) − φ ( 5 , 4 ) = 15 − 1 = 14 {\displaystyle \varphi (\,\,\,65,\,\,\,5)=\varphi (\,\,\,65,\,\,\,4)-\varphi (\,\,\,5,\,\,\,4)=\,\,\,15-\,\,\,\,\,\,1=\,\,\,14} φ ( 65 , 4 ) = φ ( 65 , 3 ) − φ ( 9 , 3 ) = 17 − 2 = 15 {\displaystyle \varphi (\,\,\,65,\,\,\,4)=\varphi (\,\,\,65,\,\,\,3)-\varphi (\,\,\,9,\,\,\,3)=\,\,\,17-\,\,\,\,\,\,2=\,\,\,15} φ ( 65 , 3 ) = φ ( 65 , 2 ) − φ ( 13 , 2 ) = 22 − 5 = 17 {\displaystyle \varphi (\,\,\,65,\,\,\,3)=\varphi (\,\,\,65,\,\,\,2)-\varphi (13,\,\,\,2)=\,\,\,22-\,\,\,\,\,\,5=\,\,\,17} φ ( 65 , 2 ) = φ ( 65 , 1 ) − φ ( 21 , 1 ) = 33 − 11 = 22 {\displaystyle \varphi (\,\,\,65,\,\,\,2)=\varphi (\,\,\,65,\,\,\,1)-\varphi (21,\,\,\,1)=\,\,\,33-\,\,\,11=\,\,\,22} φ ( 13 , 2 ) = φ ( 13 , 1 ) − φ ( 4 , 1 ) = 7 − 2 {\displaystyle \varphi (\,\,\,13,\,\,\,2)=\varphi (13,\,\,\,1)-\varphi (4,1)=\,\,\,\,\,\,7-\,\,\,\,\,\,2}
φ ( 9 , 3 ) = φ ( 9 , 2 ) − φ ( 1 , 2 ) = 3 − 1 {\displaystyle \varphi (\,\,\,9,\,\,\,3)=\varphi (\,\,\,9,\,\,\,2)-\varphi (1,2)=\,\,\,\,\,\,3-\,\,\,\,\,\,1} φ ( 9 , 2 ) = φ ( 9 , 1 ) − φ ( 3 , 1 ) = 5 − 2 {\displaystyle \varphi (\,\,\,9,\,\,\,2)=\varphi (\,\,\,9,\,\,\,1)-\varphi (3,1)=\,\,\,\,\,\,5-\,\,\,\,\,\,2}
2 {\displaystyle \,\,\,\,\,\,2} 3 {\displaystyle \,\,\,\,\,\,3}
φ ( 2325 , 13 ) = φ ( 2325 , 12 ) − φ ( 56 , 12 ) = 341 − 5 = 336 {\displaystyle \varphi (2325,13)=\varphi (2325,12)-\varphi (\,\,\,56,12)=\,\,\,341-\,\,\,\,\,\,5=336} φ ( 2325 , 12 ) = φ ( 2325 , 11 ) − φ ( 62 , 11 ) = 349 − 8 = 341 {\displaystyle \varphi (2325,12)=\varphi (2325,11)-\varphi (\,\,\,62,11)=\,\,\,349-\,\,\,\,\,\,8=341} φ ( 2325 , 11 ) = φ ( 2325 , 10 ) − φ ( 78 , 10 ) = 361 − 12 = 349 {\displaystyle \varphi (2325,11)=\varphi (2325,10)-\varphi (\,\,\,78,10)=\,\,\,361-\,\,\,12=349} φ ( 2325 , 10 ) = φ ( 2325 , 9 ) − φ ( 80 , 9 ) = 375 − 14 = 361 {\displaystyle \varphi (2325,10)=\varphi (2325,\,\,\,9)-\varphi (\,\,\,80,\,\,\,9)=\,\,\,375-\,\,\,14=361} φ ( 2325 , 9 ) = φ ( 2325 , 8 ) − φ ( 101 , 8 ) = 394 − 19 = 375 {\displaystyle \varphi (2325,\,\,\,9)=\varphi (2325,\,\,\,8)-\varphi (101,\,\,\,8)=\,\,\,394-\,\,\,19=375} φ ( 2325 , 8 ) = φ ( 2325 , 7 ) − φ ( 122 , 7 ) = 418 − 24 = 394 {\displaystyle \varphi (2325,\,\,\,8)=\varphi (2325,\,\,\,7)-\varphi (122,\,\,\,7)=\,\,\,418-\,\,\,24=394} φ ( 2325 , 7 ) = φ ( 2325 , 6 ) − φ ( 136 , 6 ) = 445 − 27 = 418 {\displaystyle \varphi (2325,\,\,\,7)=\varphi (2325,\,\,\,6)-\varphi (136,\,\,\,6)=\,\,\,445-\,\,\,27=418} φ ( 2325 , 6 ) = φ ( 2325 , 5 ) − φ ( 178 , 5 ) = 482 − 37 = 445 {\displaystyle \varphi (2325,\,\,\,6)=\varphi (2325,\,\,\,5)-\varphi (178,\,\,\,5)=\,\,\,482-\,\,\,37=445} φ ( 2325 , 5 ) = φ ( 2325 , 4 ) − φ ( 211 , 4 ) = 531 − 49 = 482 {\displaystyle \varphi (2325,\,\,\,5)=\varphi (2325,\,\,\,4)-\varphi (211,\,\,\,4)=\,\,\,531-\,\,\,49=482} φ ( 2325 , 4 ) = φ ( 2325 , 3 ) − φ ( 332 , 3 ) = 620 − 89 = 531 {\displaystyle \varphi (2325,\,\,\,4)=\varphi (2325,\,\,\,3)-\varphi (332,\,\,\,3)=\,\,\,620-\,\,\,89=531} φ ( 2325 , 3 ) = φ ( 2325 , 2 ) − φ ( 465 , 2 ) = 775 − 155 = 620 {\displaystyle \varphi (2325,\,\,\,3)=\varphi (2325,\,\,\,2)-\varphi (465,\,\,\,2)=\,\,\,775-155=620} φ ( 2325 , 2 ) = φ ( 2325 , 1 ) − φ ( 775 , 1 ) = 1163 − 388 = 775 {\displaystyle \varphi (2325,\,\,\,2)=\varphi (2325,\,\,\,1)-\varphi (775,\,\,\,1)=1163-388=775} φ ( 465 , 2 ) = φ ( 465 , 1 ) − φ ( 155 , 1 ) = 233 − 78 {\displaystyle \varphi (\,\,\,465,\,\,\,2)=\varphi (465,\,\,\,1)-\varphi (155,1)=233-\,\,\,78}
155 {\displaystyle 155}
φ ( 332 , 3 ) = φ ( 332 , 1 ) − φ ( 66 , 2 ) = 111 − 22 {\displaystyle \varphi (\,\,\,332,\,\,\,3)=\varphi (\,\,\,332,\,\,\,1)-\varphi (\,\,\,66,2)=111-\,\,\,22} φ ( 332 , 2 ) = φ ( 332 , 1 ) − φ ( 110 , 1 ) = 166 − 55 {\displaystyle \varphi (\,\,\,332,\,\,\,2)=\varphi (\,\,\,332,\,\,\,1)-\varphi (110,1)=166-\,\,\,55} φ ( 66 , 2 ) = φ ( 66 , 1 ) − φ ( 22 , 1 ) = 33 − 11 {\displaystyle \varphi (66,\,\,\,2)=\varphi (\,\,\,66,\,\,\,1)-\varphi (\,\,\,22,1)=\,\,\,33-\,\,\,11}
89 {\displaystyle \,\,\,89} 111 {\displaystyle 111} 22 {\displaystyle \,\,\,22}
φ ( 211 , 4 ) = φ ( 211 , 3 ) − φ ( 30 , 3 ) = 57 − 8 = 49 {\displaystyle \varphi (211,\,\,\,4)=\varphi (211,\,\,\,3)-\varphi (30,\,\,\,3)=\,\,\,57-\,\,\,\,\,\,8=\,\,\,49} φ ( 211 , 3 ) = φ ( 211 , 2 ) − φ ( 42 , 2 ) = 71 − 14 = 57 {\displaystyle \varphi (211,\,\,\,3)=\varphi (211,\,\,\,2)-\varphi (42,\,\,\,2)=\,\,\,71-\,\,\,14=\,\,\,57} φ ( 211 , 2 ) = φ ( 211 , 1 ) − φ ( 70 , 1 ) = 106 − 35 = 71 {\displaystyle \varphi (211,\,\,\,2)=\varphi (211,\,\,\,1)-\varphi (70,\,\,\,1)=106-\,\,\,35=\,\,\,71} φ ( 42 , 2 ) = φ ( 42 , 1 ) − φ ( 14 , 1 ) = 21 − 7 {\displaystyle \varphi (\,\,\,42,\,\,\,2)=\varphi (42,\,\,\,1)-\varphi (14,1)=\,\,\,21-\,\,\,\,\,\,7}
14 {\displaystyle \,\,\,14}
φ ( 30 , 2 ) = φ ( 30 , 1 ) − φ ( 10 , 1 ) = 15 − 5 {\displaystyle \varphi (\,\,\,30,\,\,\,2)=\varphi (\,\,\,30,\,\,\,1)-\varphi (10,1)=\,\,\,15-\,\,\,\,\,\,5} φ ( 6 , 2 ) = φ ( 6 , 1 ) − φ ( 2 , 1 ) = 3 − 1 {\displaystyle \varphi (\,\,\,6,\,\,\,2)=\varphi (\,\,\,6,\,\,\,1)-\varphi (2,1)=\,\,\,\,\,\,3-\,\,\,\,\,\,1}
φ ( 178 , 4 ) = φ ( 178 , 3 ) − φ ( 25 , 3 ) = 47 − 7 = 40 {\displaystyle \varphi (178,\,\,\,4)=\varphi (178,\,\,\,3)-\varphi (25,\,\,\,3)=\,\,\,47-\,\,\,\,\,\,7=\,\,\,40} φ ( 178 , 3 ) = φ ( 178 , 2 ) − φ ( 35 , 2 ) = 59 − 12 = 47 {\displaystyle \varphi (178,\,\,\,3)=\varphi (178,\,\,\,2)-\varphi (35,\,\,\,2)=\,\,\,59-\,\,\,12=\,\,\,47} φ ( 178 , 2 ) = φ ( 178 , 1 ) − φ ( 59 , 1 ) = 89 − 30 = 59 {\displaystyle \varphi (178,\,\,\,2)=\varphi (178,\,\,\,1)-\varphi (59,\,\,\,1)=\,\,\,89-\,\,\,30=\,\,\,59} φ ( 35 , 2 ) = φ ( 35 , 1 ) − φ ( 11 , 1 ) = 18 − 6 {\displaystyle \varphi (\,\,\,35,\,\,\,2)=\varphi (35,\,\,\,1)-\varphi (11,1)=\,\,\,18-\,\,\,\,\,\,6}
12 {\displaystyle \,\,\,12}
φ ( 25 , 3 ) = φ ( 25 , 2 ) − φ ( 5 , 2 ) = 9 − 2 {\displaystyle \varphi (\,\,\,25,\,\,\,3)=\varphi (\,\,\,25,\,\,\,2)-\varphi (\,\,\,5,2)=\,\,\,\,\,\,9-\,\,\,\,\,\,2} φ ( 25 , 2 ) = φ ( 25 , 1 ) − φ ( 8 , 1 ) = 13 − 2 {\displaystyle \varphi (\,\,\,25,\,\,\,2)=\varphi (\,\,\,25,\,\,\,1)-\varphi (\,\,\,8,1)=\,\,\,\,13-\,\,\,\,\,\,2} φ ( 5 , 2 ) = φ ( 5 , 1 ) − φ ( 1 , 1 ) = 3 − 1 {\displaystyle \varphi (\,\,\,5,\,\,\,2)=\varphi (\,\,\,5,\,\,\,1)-\varphi (\,\,\,1,1)=\,\,\,\,\,\,3-\,\,\,\,\,\,1}
7 {\displaystyle \,\,\,\,\,\,7} 9 {\displaystyle \,\,\,\,\,\,9} 2 {\displaystyle \,\,\,\,\,\,2}
φ ( 16 , 4 ) = φ ( 16 , 3 ) − φ ( 2 , 3 ) = 4 − 1 {\displaystyle \varphi (\,\,\,16,\,\,\,4)=\varphi (\,\,\,16,\,\,\,3)-\varphi (\,\,\,2,3)=\,\,\,\,\,\,4-\,\,\,\,\,\,1} φ ( 16 , 3 ) = φ ( 16 , 2 ) − φ ( 3 , 2 ) = 5 − 1 {\displaystyle \varphi (\,\,\,16,\,\,\,3)=\varphi (\,\,\,16,\,\,\,2)-\varphi (\,\,\,3,2)=\,\,\,\,\,\,5-\,\,\,\,\,\,1} φ ( 16 , 2 ) = φ ( 16 , 1 ) − φ ( 5 , 1 ) = 8 − 3 {\displaystyle \varphi (\,\,\,16,\,\,\,2)=\varphi (\,\,\,16,\,\,\,1)-\varphi (\,\,\,5,1)=\,\,\,\,\,\,8-\,\,\,\,\,\,3}
3 {\displaystyle \,\,\,\,\,\,3} 4 {\displaystyle \,\,\,\,\,\,4} 5 {\displaystyle \,\,\,\,\,\,5}
φ ( 136 , 6 ) = φ ( 136 , 5 ) − φ ( 10 , 5 ) = 28 − 1 = 27 {\displaystyle \varphi (136,\,\,\,6)=\varphi (136,\,\,\,5)-\varphi (10,\,\,\,5)=\,\,\,28-\,\,\,\,\,\,1=\,\,\,27} φ ( 136 , 5 ) = φ ( 136 , 4 ) − φ ( 12 , 4 ) = 30 − 2 = 28 {\displaystyle \varphi (136,\,\,\,5)=\varphi (136,\,\,\,4)-\varphi (12,\,\,\,4)=\,\,\,30-\,\,\,\,\,\,2=\,\,\,28} φ ( 136 , 4 ) = φ ( 136 , 3 ) − φ ( 19 , 3 ) = 36 − 6 = 30 {\displaystyle \varphi (136,\,\,\,4)=\varphi (136,\,\,\,3)-\varphi (19,\,\,\,3)=\,\,\,36-\,\,\,\,\,\,6=\,\,\,30} φ ( 136 , 3 ) = φ ( 136 , 2 ) − φ ( 27 , 2 ) = 45 − 9 = 36 {\displaystyle \varphi (136,\,\,\,3)=\varphi (136,\,\,\,2)-\varphi (27,\,\,\,2)=\,\,\,45-\,\,\,\,\,\,9=\,\,\,36} φ ( 136 , 2 ) = φ ( 136 , 1 ) − φ ( 45 , 1 ) = 68 − 23 = 45 {\displaystyle \varphi (136,\,\,\,2)=\varphi (136,\,\,\,1)-\varphi (45,\,\,\,1)=\,\,\,68-\,\,\,23=\,\,\,45} φ ( 27 , 2 ) = φ ( 27 , 1 ) − φ ( 9 , 1 ) = 14 − 5 {\displaystyle \varphi (27,2)=\varphi (27,1)-\varphi (9,\,\,\,1)=\,\,\,14-\,\,\,\,\,\,5} φ ( 19 , 3 ) = φ ( 19 , 2 ) − φ ( 3 , 2 ) = 7 − 1 {\displaystyle \varphi (19,3)=\varphi (19,2)-\varphi (3,\,\,\,2)=\,\,\,\,\,\,7-\,\,\,\,\,\,1} φ ( 19 , 2 ) = φ ( 19 , 1 ) − φ ( 6 , 1 ) = 10 − 3 {\displaystyle \varphi (19,2)=\varphi (19,1)-\varphi (6,\,\,\,1)=\,\,\,10-\,\,\,\,\,\,3}
9 {\displaystyle \,\,\,\,\,\,9} 6 {\displaystyle \,\,\,\,\,\,6} 7 {\displaystyle \,\,\,\,\,\,7}
φ ( 12 , 4 ) = φ ( 12 , 3 ) − φ ( 1 , 3 ) = 3 − 1 {\displaystyle \varphi (12,4)=\varphi (12,3)-\varphi (1,\,\,\,3)=\,\,\,\,\,\,3-\,\,\,\,\,\,1} φ ( 12 , 3 ) = φ ( 12 , 2 ) − φ ( 2 , 2 ) = 4 − 1 {\displaystyle \varphi (12,3)=\varphi (12,2)-\varphi (2,\,\,\,2)=\,\,\,\,\,\,4-\,\,\,\,\,\,1} φ ( 12 , 2 ) = φ ( 12 , 1 ) − φ ( 4 , 1 ) = 6 − 3 {\displaystyle \varphi (12,2)=\varphi (12,1)-\varphi (4,\,\,\,1)=\,\,\,\,\,\,6-\,\,\,\,\,\,3}
φ ( 122 , 7 ) = φ ( 136 , 6 ) − φ ( 7 , 6 ) = 25 − 1 = 24 {\displaystyle \varphi (122,\,\,\,7)=\varphi (136,\,\,\,6)-\varphi (\,\,\,7,\,\,\,6)=\,\,\,25-\,\,\,\,\,\,1=\,\,\,24} φ ( 122 , 6 ) = φ ( 136 , 5 ) − φ ( 9 , 5 ) = 26 − 1 = 25 {\displaystyle \varphi (122,\,\,\,6)=\varphi (136,\,\,\,5)-\varphi (\,\,\,9,\,\,\,5)=\,\,\,26-\,\,\,\,\,\,1=\,\,\,25} φ ( 122 , 5 ) = φ ( 136 , 4 ) − φ ( 11 , 4 ) = 28 − 2 = 26 {\displaystyle \varphi (122,\,\,\,5)=\varphi (136,\,\,\,4)-\varphi (11,\,\,\,4)=\,\,\,28-\,\,\,\,\,\,2=\,\,\,26} φ ( 122 , 4 ) = φ ( 136 , 3 ) − φ ( 17 , 3 ) = 33 − 5 = 28 {\displaystyle \varphi (122,\,\,\,4)=\varphi (136,\,\,\,3)-\varphi (17,\,\,\,3)=\,\,\,33-\,\,\,\,\,\,5=\,\,\,28} φ ( 122 , 3 ) = φ ( 136 , 2 ) − φ ( 24 , 2 ) = 41 − 8 = 33 {\displaystyle \varphi (122,\,\,\,3)=\varphi (136,\,\,\,2)-\varphi (24,\,\,\,2)=\,\,\,41-\,\,\,\,\,\,8=\,\,\,33} φ ( 122 , 2 ) = φ ( 136 , 1 ) − φ ( 40 , 1 ) = 61 − 20 = 41 {\displaystyle \varphi (122,\,\,\,2)=\varphi (136,\,\,\,1)-\varphi (40,\,\,\,1)=\,\,\,61-\,\,\,20=\,\,\,41} φ ( 24 , 2 ) = φ ( 24 , 1 ) − φ ( 8 , 1 ) = 12 − 4 {\displaystyle \varphi (24,2)=\varphi (24,\,\,\,1)-\varphi (8,1)=\,\,\,12-\,\,\,\,\,\,4}
8 {\displaystyle \,\,\,\,\,\,8}
φ ( 17 , 3 ) = φ ( 17 , 2 ) − φ ( 3 , 2 ) = = 6 − 1 = 5 {\displaystyle \varphi (\,\,\,17,\,\,\,3)=\varphi (\,\,\,17,\,\,\,2)-\varphi (3,2)=\,\,\,=\,\,\,6-\,\,\,\,\,\,1=\,\,\,\,\,\,5} φ ( 17 , 2 ) = φ ( 17 , 1 ) − φ ( 5 , 1 ) = = 9 − 3 = 6 {\displaystyle \varphi (\,\,\,17,\,\,\,2)=\varphi (\,\,\,17,\,\,\,1)-\varphi (5,1)=\,\,\,=\,\,\,9-\,\,\,\,\,\,3=\,\,\,\,\,\,6}
φ ( 11 , 4 ) = φ ( 11 , 3 ) − φ ( 1 , 3 ) = = 3 − 1 = 2 {\displaystyle \varphi (\,\,\,11,\,\,\,4)=\varphi (\,\,\,11,\,\,\,3)-\varphi (1,3)=\,\,\,=\,\,\,3-\,\,\,\,\,\,1=\,\,\,\,\,\,2} φ ( 11 , 3 ) = φ ( 11 , 2 ) − φ ( 2 , 2 ) = = 4 − 1 = 3 {\displaystyle \varphi (\,\,\,11,\,\,\,3)=\varphi (\,\,\,11,\,\,\,2)-\varphi (2,2)=\,\,\,=\,\,\,4-\,\,\,\,\,\,1=\,\,\,\,\,\,3} φ ( 11 , 2 ) = φ ( 11 , 1 ) − φ ( 3 , 1 ) = = 6 − 2 = 4 {\displaystyle \varphi (\,\,\,11,\,\,\,2)=\varphi (\,\,\,11,\,\,\,1)-\varphi (3,1)=\,\,\,=\,\,\,6-\,\,\,\,\,\,2=\,\,\,\,\,\,4}
φ ( 101 , 8 ) = φ ( 101 , 7 ) − φ ( 5 , 7 ) = 20 − 1 = 19 {\displaystyle \varphi (101,\,\,\,8)=\varphi (101,\,\,\,7)-\varphi (\,\,\,5,\,\,\,7)=\,\,\,20-\,\,\,\,\,\,1=\,\,\,19} φ ( 101 , 7 ) = φ ( 101 , 6 ) − φ ( 5 , 6 ) = 21 − 1 = 20 {\displaystyle \varphi (101,\,\,\,7)=\varphi (101,\,\,\,6)-\varphi (\,\,\,5,\,\,\,6)=\,\,\,21-\,\,\,\,\,\,1=\,\,\,20} φ ( 101 , 6 ) = φ ( 101 , 5 ) − φ ( 7 , 5 ) = 22 − 1 = 21 {\displaystyle \varphi (101,\,\,\,6)=\varphi (101,\,\,\,5)-\varphi (\,\,\,7,\,\,\,5)=\,\,\,22-\,\,\,\,\,\,1=\,\,\,21} φ ( 101 , 5 ) = φ ( 101 , 4 ) − φ ( 9 , 4 ) = 23 − 1 = 22 {\displaystyle \varphi (101,\,\,\,5)=\varphi (101,\,\,\,4)-\varphi (\,\,\,9,\,\,\,4)=\,\,\,23-\,\,\,\,\,\,1=\,\,\,22} φ ( 101 , 4 ) = φ ( 101 , 3 ) − φ ( 14 , 3 ) = 27 − 4 = 23 {\displaystyle \varphi (101,\,\,\,4)=\varphi (101,\,\,\,3)-\varphi (14,\,\,\,3)=\,\,\,27-\,\,\,\,\,\,4=\,\,\,23} φ ( 101 , 3 ) = φ ( 101 , 2 ) − φ ( 20 , 2 ) = 34 − 7 = 27 {\displaystyle \varphi (101,\,\,\,3)=\varphi (101,\,\,\,2)-\varphi (20,\,\,\,2)=\,\,\,34-\,\,\,\,\,\,7=\,\,\,27} φ ( 101 , 2 ) = φ ( 101 , 1 ) − φ ( 33 , 1 ) = 51 − 17 = 34 {\displaystyle \varphi (101,\,\,\,2)=\varphi (101,\,\,\,1)-\varphi (33,\,\,\,1)=\,\,\,51-\,\,\,17=\,\,\,34} φ ( 20 , 2 ) = φ ( 20 , 1 ) − φ ( 6 , 1 ) = 10 − 3 {\displaystyle \varphi (\,\,\,20,\,\,\,2)=\varphi (20,\,\,\,1)-\varphi (6,1)=\,\,\,10-\,\,\,\,\,\,3}
φ ( 14 , 3 ) = φ ( 14 , 2 ) − φ ( 2 , 2 ) = 5 − 1 {\displaystyle \varphi (\,\,\,14,\,\,\,3)=\varphi (14,\,\,\,2)-\varphi (2,2)=\,\,\,\,\,\,5-\,\,\,\,\,\,1} φ ( 14 , 2 ) = φ ( 14 , 1 ) − φ ( 4 , 1 ) = 7 − 2 {\displaystyle \varphi (\,\,\,14,\,\,\,2)=\varphi (14,\,\,\,1)-\varphi (4,1)=\,\,\,\,\,\,7-\,\,\,\,\,\,2}
φ ( 80 , 9 ) = φ ( 80 , 8 ) − φ ( 3 , 8 ) = 15 − 1 = 14 {\displaystyle \varphi (\,\,\,80,\,\,\,9)=\varphi (\,\,\,80,\,\,\,8)-\varphi (\,\,\,3,\,\,\,8)=\,\,\,15-\,\,\,\,\,\,1=\,\,\,14} φ ( 80 , 8 ) = φ ( 80 , 7 ) − φ ( 4 , 7 ) = 16 − 1 = 15 {\displaystyle \varphi (\,\,\,80,\,\,\,8)=\varphi (\,\,\,80,\,\,\,7)-\varphi (\,\,\,4,\,\,\,7)=\,\,\,16-\,\,\,\,\,\,1=\,\,\,15} φ ( 80 , 7 ) = φ ( 80 , 6 ) − φ ( 4 , 6 ) = 17 − 1 = 16 {\displaystyle \varphi (\,\,\,80,\,\,\,7)=\varphi (\,\,\,80,\,\,\,6)-\varphi (\,\,\,4,\,\,\,6)=\,\,\,17-\,\,\,\,\,\,1=\,\,\,16} φ ( 80 , 5 ) = φ ( 80 , 5 ) − φ ( 6 , 5 ) = 18 − 1 = 17 {\displaystyle \varphi (\,\,\,80,\,\,\,5)=\varphi (\,\,\,80,\,\,\,5)-\varphi (\,\,\,6,\,\,\,5)=\,\,\,18-\,\,\,\,\,\,1=\,\,\,17} φ ( 80 , 4 ) = φ ( 80 , 3 ) − φ ( 11 , 3 ) = 22 − 3 = 19 {\displaystyle \varphi (\,\,\,80,\,\,\,4)=\varphi (\,\,\,80,\,\,\,3)-\varphi (11,\,\,\,3)=\,\,\,22-\,\,\,\,\,\,3=\,\,\,19} φ ( 80 , 3 ) = φ ( 80 , 2 ) − φ ( 16 , 2 ) = 27 − 5 = 22 {\displaystyle \varphi (\,\,\,80,\,\,\,3)=\varphi (\,\,\,80,\,\,\,2)-\varphi (16,\,\,\,2)=\,\,\,27-\,\,\,\,\,\,5=\,\,\,22} φ ( 80 , 2 ) = φ ( 80 , 1 ) − φ ( 26 , 1 ) = 40 − 13 = 27 {\displaystyle \varphi (\,\,\,80,\,\,\,2)=\varphi (\,\,\,80,\,\,\,1)-\varphi (26,\,\,\,1)=\,\,\,40-\,\,\,13=\,\,\,27} φ ( 16 , 2 ) = φ ( 16 , 1 ) − φ ( 5 , 1 ) = 8 − 3 {\displaystyle \varphi (\,\,\,16,\,\,\,2)=\varphi (16,\,\,\,1)-\varphi (5,1)=\,\,\,\,\,\,8-\,\,\,\,\,\,3}
φ ( 11 , 3 ) = φ ( 11 , 2 ) − φ ( 2 , 2 ) = 4 − 1 {\displaystyle \varphi (\,\,\,11,\,\,\,3)=\varphi (11,\,\,\,2)-\varphi (2,2)=\,\,\,\,\,\,4-\,\,\,\,\,\,1} φ ( 11 , 2 ) = φ ( 11 , 1 ) − φ ( 3 , 1 ) = 6 − 2 {\displaystyle \varphi (\,\,\,11,\,\,\,2)=\varphi (11,\,\,\,1)-\varphi (3,1)=\,\,\,\,\,\,6-\,\,\,\,\,\,2}
φ ( 75 , 10 ) = φ ( 75 , 9 ) − φ ( 2 , 9 ) = = 13 − 1 = 12 {\displaystyle \varphi (\,\,\,75,10)=\varphi (\,\,\,75,\,\,\,9)-\varphi (\,\,\,2,9)=\,\,\,=\,\,\,13-\,\,\,\,\,\,1=\,\,\,12} φ ( 75 , 9 ) = φ ( 75 , 8 ) − φ ( 3 , 8 ) = = 14 − 1 = 13 {\displaystyle \varphi (\,\,\,75,\,\,\,9)=\varphi (\,\,\,75,\,\,\,8)-\varphi (\,\,\,3,8)=\,\,\,=\,\,\,14-\,\,\,\,\,\,1=\,\,\,13} φ ( 75 , 8 ) = φ ( 75 , 7 ) − φ ( 3 , 7 ) = = 15 − 1 = 14 {\displaystyle \varphi (\,\,\,75,\,\,\,8)=\varphi (\,\,\,75,\,\,\,7)-\varphi (\,\,\,3,7)=\,\,\,=\,\,\,15-\,\,\,\,\,\,1=\,\,\,14} φ ( 75 , 7 ) = φ ( 75 , 6 ) − φ ( 4 , 6 ) = = 16 − 1 = 15 {\displaystyle \varphi (\,\,\,75,\,\,\,7)=\varphi (\,\,\,75,\,\,\,6)-\varphi (\,\,\,4,6)=\,\,\,=\,\,\,16-\,\,\,\,\,\,1=\,\,\,15} φ ( 75 , 6 ) = φ ( 75 , 5 ) − φ ( 5 , 5 ) = = 17 − 1 = 16 {\displaystyle \varphi (\,\,\,75,\,\,\,6)=\varphi (\,\,\,75,\,\,\,5)-\varphi (\,\,\,5,5)=\,\,\,=\,\,\,17-\,\,\,\,\,\,1=\,\,\,16} φ ( 75 , 5 ) = φ ( 75 , 4 ) − φ ( 6 , 4 ) = = 18 − 1 = 17 {\displaystyle \varphi (\,\,\,75,\,\,\,5)=\varphi (\,\,\,75,\,\,\,4)-\varphi (\,\,\,6,4)=\,\,\,=\,\,\,18-\,\,\,\,\,\,1=\,\,\,17} φ ( 75 , 4 ) = φ ( 75 , 3 ) − φ ( 10 , 3 ) = = 20 − 2 = 18 {\displaystyle \varphi (\,\,\,75,\,\,\,4)=\varphi (\,\,\,75,\,\,\,3)-\varphi (10,3)=\,\,\,=\,\,\,20-\,\,\,\,\,\,2=\,\,\,18} φ ( 75 , 3 ) = φ ( 75 , 2 ) − φ ( 15 , 2 ) = = 25 − 5 = 20 {\displaystyle \varphi (\,\,\,75,\,\,\,3)=\varphi (\,\,\,75,\,\,\,2)-\varphi (15,2)=\,\,\,=\,\,\,25-\,\,\,\,\,\,5=\,\,\,20} φ ( 75 , 2 ) = φ ( 75 , 1 ) − φ ( 25 , 1 ) = = 38 − 13 = 25 {\displaystyle \varphi (\,\,\,75,\,\,\,2)=\varphi (\,\,\,75,\,\,\,1)-\varphi (25,1)=\,\,\,=\,\,\,38-\,\,\,13=\,\,\,25} φ ( 15 , 2 ) = φ ( 15 , 1 ) − φ ( 5 , 1 ) = 8 − 3 {\displaystyle \varphi (\,\,\,15,\,\,\,2)=\varphi (15,\,\,\,1)-\varphi (5,1)=\,\,\,\,\,\,8-\,\,\,\,\,\,3}
φ ( 10 , 3 ) = φ ( 10 , 2 ) − φ ( 2 , 2 ) = 3 − 1 {\displaystyle \varphi (\,\,\,10,3)=\varphi (10,2)-\varphi (2,2)=\,\,\,3-\,\,\,\,\,\,1} φ ( 10 , 2 ) = φ ( 10 , 1 ) − φ ( 3 , 1 ) = 5 − 2 {\displaystyle \varphi (\,\,\,10,2)=\varphi (10,1)-\varphi (3,1)=\,\,\,5-\,\,\,\,\,\,2}
2 {\displaystyle \,\,\,2} 3 {\displaystyle \,\,\,3}
φ ( 62 , 11 ) = φ ( 62 , 10 ) − φ ( 2 , 10 ) = 9 − 1 = 8 {\displaystyle \varphi (62,11)=\varphi (62,10)-\varphi (\,\,\,2,10)=\,\,\,\,\,\,\,\,\,9\,\,\,\,\,\,\,-\,\,\,1=\,\,\,\,\,\,8} φ ( 62 , 10 ) = φ ( 62 , 9 ) − φ ( 2 , 9 ) = 10 − 1 = 9 {\displaystyle \varphi (62,10)=\varphi (62,\,\,\,9)-\varphi (\,\,\,2,\,\,\,9)=\,\,\,\,\,\,10\,\,\,\,\,\,\,-\,\,\,1=\,\,\,\,\,\,9} φ ( 62 , 9 ) = φ ( 62 , 8 ) − φ ( 2 , 8 ) = 11 − 1 = 10 {\displaystyle \varphi (62,\,\,\,9)=\varphi (62,\,\,\,8)-\varphi (\,\,\,2,\,\,\,8)=\,\,\,\,\,\,11\,\,\,\,\,\,\,-\,\,\,1=\,\,\,10} φ ( 62 , 8 ) = φ ( 62 , 7 ) − φ ( 3 , 7 ) = 12 − 1 = 11 {\displaystyle \varphi (62,\,\,\,8)=\varphi (62,\,\,\,7)-\varphi (\,\,\,3,\,\,\,7)=\,\,\,\,\,\,12\,\,\,\,\,\,\,-\,\,\,1=\,\,\,11} φ ( 62 , 7 ) = φ ( 62 , 6 ) − φ ( 3 , 6 ) = 13 − 1 = 12 {\displaystyle \varphi (62,\,\,\,7)=\varphi (62,\,\,\,6)-\varphi (\,\,\,3,\,\,\,6)=\,\,\,\,\,\,13\,\,\,\,\,\,\,-\,\,\,1=\,\,\,12} φ ( 62 , 6 ) = φ ( 62 , 5 ) − φ ( 4 , 5 ) = 14 − 1 = 13 {\displaystyle \varphi (62,\,\,\,6)=\varphi (62,\,\,\,5)-\varphi (\,\,\,4,\,\,\,5)=\,\,\,\,\,\,14\,\,\,\,\,\,\,-\,\,\,1=\,\,\,13} φ ( 62 , 5 ) = φ ( 62 , 4 ) − φ ( 5 , 4 ) = 15 − 1 = 14 {\displaystyle \varphi (62,\,\,\,5)=\varphi (62,\,\,\,4)-\varphi (\,\,\,5,\,\,\,4)=\,\,\,\,\,\,15\,\,\,\,\,\,\,-\,\,\,1=\,\,\,14} φ ( 62 , 4 ) = φ ( 62 , 3 ) − φ ( 8 , 3 ) = 17 − 2 = 15 {\displaystyle \varphi (62,\,\,\,4)=\varphi (62,\,\,\,3)-\varphi (\,\,\,8,\,\,\,3)=\,\,\,\,\,\,17\,\,\,\,\,\,\,-\,\,\,2=\,\,\,15} φ ( 62 , 3 ) = φ ( 62 , 2 ) − φ ( 12 , 2 ) = 21 − 4 = 17 {\displaystyle \varphi (62,\,\,\,3)=\varphi (62,\,\,\,2)-\varphi (12,\,\,\,2)=\,\,\,\,\,\,21\,\,\,\,\,\,\,-\,\,\,4=\,\,\,17} φ ( 62 , 2 ) = φ ( 62 , 1 ) − φ ( 20 , 2 ) = 31 − 10 = 21 {\displaystyle \varphi (62,\,\,\,2)=\varphi (62,\,\,\,1)-\varphi (20,\,\,\,2)=\,\,\,\,\,\,31\,\,\,\,\,\,\,-10=\,\,\,21} φ ( 12 , 2 ) = φ ( 12 , 1 ) − φ ( 4 , 1 ) = 6 − 2 {\displaystyle \varphi (12,2)=\varphi (12,1)-\varphi (4,1)=\,\,\,6-\,\,\,\,\,\,2}
4 {\displaystyle 4}
φ ( 8 , 3 ) = φ ( 8 , 2 ) − φ ( 1 , 2 ) = 3 − 1 {\displaystyle \varphi (\,\,\,8,3)=\varphi (\,\,\,8,2)-\varphi (1,2)=\,\,\,3-\,\,\,\,\,\,1} φ ( 8 , 2 ) = φ ( 8 , 1 ) − φ ( 2 , 1 ) = 4 − 1 {\displaystyle \varphi (\,\,\,8,2)=\varphi (\,\,\,8,1)-\varphi (2,1)=\,\,\,4-\,\,\,\,\,\,1}
2 {\displaystyle 2} 3 {\displaystyle 3}
φ ( 56 , 12 ) = φ ( 56 , 11 ) − φ ( 1 , 11 ) = 6 − 1 = 5 {\displaystyle \varphi (56,12)=\varphi (56,11)-\varphi (\,\,\,1,11)=\,\,\,\,\,\,\,\,\,6\,\,\,\,\,\,\,-\,\,\,1=\,\,\,\,\,\,5} φ ( 56 , 11 ) = φ ( 56 , 10 ) − φ ( 1 , 10 ) = 7 − 1 = 6 {\displaystyle \varphi (56,11)=\varphi (56,10)-\varphi (\,\,\,1,10)=\,\,\,\,\,\,\,\,\,7\,\,\,\,\,\,\,-\,\,\,1=\,\,\,\,\,\,6} φ ( 56 , 10 ) = φ ( 56 , 9 ) − φ ( 1 , 9 ) = 8 − 1 = 7 {\displaystyle \varphi (56,10)=\varphi (56,\,\,\,9)-\varphi (\,\,\,1,\,\,\,9)=\,\,\,\,\,\,\,\,\,8\,\,\,\,\,\,\,-\,\,\,1=\,\,\,\,\,\,7} φ ( 56 , 9 ) = φ ( 56 , 8 ) − φ ( 2 , 8 ) = 9 − 1 = 8 {\displaystyle \varphi (56,\,\,\,9)=\varphi (56,\,\,\,8)-\varphi (\,\,\,2,\,\,\,8)=\,\,\,\,\,\,\,\,\,9\,\,\,\,\,\,\,-\,\,\,1=\,\,\,\,\,\,8} φ ( 56 , 8 ) = φ ( 56 , 7 ) − φ ( 2 , 7 ) = 10 − 1 = 9 {\displaystyle \varphi (56,\,\,\,8)=\varphi (56,\,\,\,7)-\varphi (\,\,\,2,\,\,\,7)=\,\,\,\,\,10\,\,\,\,\,\,\,-\,\,\,1=\,\,\,\,\,\,9} φ ( 56 , 7 ) = φ ( 56 , 6 ) − φ ( 3 , 6 ) = 11 − 1 = 10 {\displaystyle \varphi (56,\,\,\,7)=\varphi (56,\,\,\,6)-\varphi (\,\,\,3,\,\,\,6)=\,\,\,\,\,11\,\,\,\,\,\,\,-\,\,\,1=\,\,\,10} φ ( 56 , 6 ) = φ ( 56 , 5 ) − φ ( 4 , 5 ) = 12 − 1 = 11 {\displaystyle \varphi (56,\,\,\,6)=\varphi (56,\,\,\,5)-\varphi (\,\,\,4,\,\,\,5)=\,\,\,\,\,12\,\,\,\,\,\,\,-\,\,\,1=\,\,\,11} φ ( 56 , 5 ) = φ ( 56 , 4 ) − φ ( 5 , 4 ) = 13 − 1 = 12 {\displaystyle \varphi (56,\,\,\,5)=\varphi (56,\,\,\,4)-\varphi (\,\,\,5,\,\,\,4)=\,\,\,\,\,13\,\,\,\,\,\,\,-\,\,\,1=\,\,\,12} φ ( 56 , 4 ) = φ ( 56 , 3 ) − φ ( 8 , 3 ) = 15 − 2 = 13 {\displaystyle \varphi (56,\,\,\,4)=\varphi (56,\,\,\,3)-\varphi (\,\,\,8,\,\,\,3)=\,\,\,\,\,15\,\,\,\,\,\,\,-\,\,\,2=\,\,\,13} φ ( 56 , 3 ) = φ ( 56 , 2 ) − φ ( 11 , 2 ) = 19 − 4 = 15 {\displaystyle \varphi (56,\,\,\,3)=\varphi (56,\,\,\,2)-\varphi (11,\,\,\,2)=\,\,\,\,\,19\,\,\,\,\,\,\,-\,\,\,4=\,\,\,15} φ ( 56 , 2 ) = φ ( 56 , 1 ) − φ ( 18 , 1 ) = 28 − 9 = 19 {\displaystyle \varphi (56,\,\,\,2)=\varphi (56,\,\,\,1)-\varphi (18,\,\,\,1)=\,\,\,\,\,28\,\,\,\,\,\,\,-\,\,\,9=\,\,\,19}
Obliczenie podług tej metody dla n = 1 , 000 000 {\displaystyle n=1,000\,000} , wymaga miejsca i czasu prawie 20 razy tyle, co dla n = 100 000 {\displaystyle n=100\,000} ; gdyż n = 100 {\displaystyle {\sqrt {n}}=100} , a ψ ( 100 ) = 25 ; φ ( 1 , 000 000 , 25 ) {\displaystyle \psi (100)=25;\varphi (1,000\,000,\,\,\,25)} . Ilość więc potrzebnych dzieleń i odejmowań bardzo się powiększa. Skraca się nieco rachunek powyższy przez uwzględnienie koła luk w numeracyi, jakie powstają przez wyjęcie liczb podzielnych przez liczby pierwsze. Koła te tworzą się podług wzoru
2.3 = 6 ; φ ( 6 , 2 ) = ( 2 − 1 ) ( 3 − 1 ) = 2 {\displaystyle 2.3=\,\,\,6;\,\,\,\varphi (6,\,\,\,2)=(2-1)(3-1)=2} 2.3.5 = 30 ; φ ( 30 , 3 ) = 2 ( 5 − 1 ) = 8 ; φ ( 60 , 3 ) = 16 ; φ ( 90 , 3 ) = 24 ; … {\displaystyle 2.3.5=30;\,\,\,\varphi (30,3)=2(5-1)=8;\,\,\,\varphi (60,3)=16;\,\,\,\varphi (90,\,\,\,3)=24;\dots } 2.3.5.7 = 210 ; φ ( 210 , 4 ) = 8 ( 7 − 1 ) = 48 ; φ ( 420 , 4 ) = 96 ; φ ( 630 , 4 ) = 144 ; … {\displaystyle 2.3.5.7=210;\,\,\,\varphi (210,4)=8(7-1)=48;\,\,\,\varphi (420,4)=96;\,\,\,\varphi (630,\,\,\,4)=144;\dots } 2.3.5.7.11 = 2310 ; φ ( 2310 , 5 ) = 48 ( 11 − 1 ) = 480 ; φ ( 4620 , 5 ) = 960 ; φ ( 6930 , 5 ) = 1440 … {\displaystyle 2.3.5.7.11=2310;\,\,\,\varphi (2310,5)=48(11-1)=480;\,\,\,\varphi (4620,5)=960;\,\,\,\varphi (6930,\,\,\,5)=1440\dots } 2.3.5.7.11.13 = 30030 ; φ ( 30030 , 6 ) = 480 ( 13 − 1 ) = 5760 ; φ ( 30030 , 6 ) = 960 ; φ ( 30030 , 6 ) = 11520 , … {\displaystyle 2.3.5.7.11.13=30030;\,\,\,\varphi (30030,6)=480(13-1)=5760;\,\,\,\varphi (30030,6)=960;\,\,\,\varphi (30030,\,\,\,6)=11520,\dots } 2.3.5.7.11.13.17 = 510510 ; φ ( 510510 , 7 ) = 5760 ( 17 − 1 ) = 92160 {\displaystyle 2.3.5.7.11.13.17=510510;\,\,\,\varphi (510510,7)=5760(17-1)=92160} i t. d. Odkrycie tych kół przypisują Drowi Meisselowi. To tylko mię dziwi, że Wertheim, wykładając wyżej przytoczoną formułę Meissela, nic o tych kołach nie wspomina. Dr. Hossfeld, gdym mu je zakomunikował, z początku uznał rzecz za nową, a potem doniósł, że Dr. Meissel je wynalazł i opisał w „Mathematische Annalen“ Bd. II , około roku 1870. Większe bez porównania od tych kół ułatwienie obliczeń daje tablica analityczna funkcyi φ ( m ) {\displaystyle \varphi (m)} . Przytoczę przykład z tablicy z rachunkiem luk φ ( n , 6 ) {\displaystyle \varphi (n,\,\,\,6)} . Za pomocą kół i tablicy rachunek, wyżej wykonany, robi się tak: φ ( 100 000 , 4 ) = φ ( 100 000 , 6 ) − φ ( 100 000 p 7 , 6 ) − φ ( 100 000 p 8 , 7 ) − … − φ ( 100 000 p 14 , 13 ) {\displaystyle \varphi (100\,000,\,\,\,4)=\varphi (100\,000,\,\,\,6)-\varphi \left({\frac {100\,000}{p_{7}}},6\right)-\varphi \left({\frac {100\,000}{p_{8}}},7\right)-\ldots -\varphi \left({\frac {100\,000}{p_{14}}},13\right)}
φ ( 100 000 , 6 ) = 100 000 30030 = 3.5 76 6 0 + [ φ ( 9910 , 6 ) = 1 9 6 01 ] = 17280 + 1 9 6 01 = 19181 {\displaystyle \varphi (100\,000,\,\,\,6)={\frac {100\,000}{30030}}=3.5{\overset {6}{76}}0+[\varphi (9910,\,\,\,6)=1{\overset {6}{9}}01]=17280+1{\overset {6}{9}}01=19181}
− φ ( 100 000 17 , 6 ) = φ ( 5882 , 6 ) = 11 6 28 . . . . . . {\displaystyle -\varphi \left({\frac {100\,000}{17}},\,\,\,6\right)=\varphi (5882,\,\,\,6)={\overset {6}{11}}28\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,.\,\,\,\,\,\,.\,\,\,\,\,\,.\,\,\,\,\,\,.\,\,\,\,\,\,.\,\,\,\,\,\,.\,\,\,\,\,\,}
− 11 6 28 {\displaystyle -\,\,\,{\overset {6}{11}}28}
− φ ( 100 000 19 , 7 ) = φ ( 5263 , 7 ) = 1 0 6 09 − 59 6 = 9 5 7 0 . . {\displaystyle -\varphi \left({\frac {100\,000}{19}},\,\,\,7\right)=\varphi (5263,\,\,\,7)=1{\overset {6}{0}}09-{\overset {6}{59}}=9{\overset {7}{5}}0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,.\,\,\,\,\,\,.\,\,\,}
− 9 5 7 0 {\displaystyle -\,\,\,\,\,\,9{\overset {7}{5}}0}
− φ ( 100 000 23 , 8 ) = φ ( 4347 , 8 ) = 83 6 4 − ( 49 6 + 43 7 − 92 ) = 74 6 2 . {\displaystyle -\varphi \left({\frac {100\,000}{23}},\,\,\,8\right)=\varphi (4347,\,\,\,8)={\overset {6}{83}}4-({\overset {6}{49}}+{\overset {7}{43}}-92)={\overset {6}{74}}2\,\,\,\,\,\,.\,\,\,}
− 74 8 2 {\displaystyle -\,\,\,\,\,\,{\overset {8}{74}}2}
− φ ( 100 000 29 , 9 ) = φ ( 3448 , 9 ) = 664 6 − ( 41 6 + 36 7 − 28 8 = 105 ) . {\displaystyle -\varphi \left({\frac {100\,000}{29}},\,\,\,9\right)=\varphi (3448,\,\,\,9)={\overset {6}{664}}-({\overset {6}{41}}+{\overset {7}{36}}-{\overset {8}{28}}=105)\,\,\,\,\,\,.\,\,\,}
− 556 9 {\displaystyle -\,\,\,\,\,\,{\overset {9}{556}}}
= 500 10 − 50 10 0 {\displaystyle =\,\,\,{\overset {10}{500}}-{\overset {10}{50}}0}
− φ ( 100 000 37 , 11 ) = φ ( 2702 , 11 ) = 51 6 9 − ( 32 6 + 28 7 + 23 8 + 16 9 + 14 10 = 113 ) . {\displaystyle -\varphi \left({\frac {100\,000}{37}},\,\,\,11\right)=\varphi (2702,11)={\overset {6}{51}}9-({\overset {6}{32}}+{\overset {7}{28}}+{\overset {8}{23}}+{\overset {9}{16}}+{\overset {10}{14}}=113)\,\,\,\,\,\,.\,\,\,}
= 406 11 − 406 11 {\displaystyle =\,\,\,{\overset {11}{406}}-{\overset {11}{406}}}
− φ ( 100 000 41 , 12 ) = φ ( 2439 , 12 ) = 4 6 68 − ( 29 6 + 25 7 + 20 8 + 15 9 + 12 10 + 8 11 = 109 ) . {\displaystyle -\varphi \left({\frac {100\,000}{41}},\,\,\,12\right)=\varphi (2439,12)={\overset {6}{4}}68-({\overset {6}{29}}+{\overset {7}{25}}+{\overset {8}{20}}+{\overset {9}{15}}+{\overset {10}{12}}+{\overset {11}{8}}=109)\,\,\,\,\,\,.\,\,\,}
= 359 12 − 359 12 {\displaystyle =\,\,\,{\overset {12}{359}}-{\overset {12}{359}}}
− φ ( 100 000 43 , 13 ) = φ ( 2325 , 12 ) = 4 6 45 − ( 27 6 + 24 7 + 19 8 + 14 9 + 12 10 + 8 11 + 5 12 = 109 ) . {\displaystyle -\varphi \left({\frac {100\,000}{43}},\,\,\,13\right)=\varphi (2325,12)={\overset {6}{4}}45-({\overset {6}{27}}+{\overset {7}{24}}+{\overset {8}{19}}+{\overset {9}{14}}+{\overset {10}{12}}+{\overset {11}{8}}+{\overset {12}{5}}=109)\,\,\,\,\,\,.\,\,\,}
= 336 13 − 336 13 {\displaystyle =\,\,\,{\overset {13}{336}}-{\overset {13}{336}}} − 4977 ¯ {\displaystyle {\overline {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\mathbf {-4977} }}}
A zatem φ ( 100 000 , 14 ) = 19 5 181 − 4877 = 14204 14 ; {\displaystyle \varphi (100\,000,\,\,\,14)={\overset {5}{19}}181-4877={\overset {14}{\mathbf {14204} }};} W drugiej połowie formuły Meissela tylko człon − 1 {\displaystyle -1} jest naturalnym, bo w numeracyi liczba 1 {\displaystyle 1} przez funkcyę φ ( m ) {\displaystyle \varphi (m)} pozostaje nietkniętą, a w wyrażeniu ψ ( m ) {\displaystyle \psi (m)} nie powinna się znajdować. Człon zaś: ∑ s = 1 s = μ ψ ( n p m+s ) {\displaystyle \sum \limits _{s=1}^{s=\mu }\psi \left({\frac {n}{p_{\scriptstyle {\text{m+s}}}}}\right)} od wartości φ ( n , m ) {\displaystyle \varphi (n,m)} odejmuje za wiele i dla tego staje się potrzebną reetytucya przez człony + m ( μ + 1 ) 2 μ ( μ − 1 ) {\displaystyle +m(\mu +1){\overset {\mu (\mu -1)}{2}}} . Jedyną racyą może być chyba potrzeba odróżnienia liczby liczb pierwszych, znajdujących się w pierwiastku sześciennym, m = φ n 3 {\displaystyle m=\varphi {\sqrt[{3}]{n}}} , od reszty liczb pierwszych, znajdujących się w pierwiastku kwadratowym, gdyż m + μ = φ n {\displaystyle m+\mu =\varphi {\sqrt {n}}} . Liczby podzielne przez liczby pierwsze, wyrażone przez μ {\displaystyle \mu } , z taką samą łatwością, jak przez sigma, bierze wartość φ ( n p k {\displaystyle \varphi ({\frac {n}{p{\scriptstyle {\text{k}}}}}} całą; funkcya zaś φ ( m ) {\displaystyle \varphi (m)} bierze tę samą wartosć zmniejszoną φ ( n p k , k − 1 ) = ψ ( n p k − ( k − 2 ) {\displaystyle \varphi \left({\frac {n}{p{\scriptstyle {\text{k}}}}},k-1\right)=\psi ({\frac {n}{p{\scriptstyle {\text{k}}}}}-(k-2)} [1]. Można się o tem przekonać z następujących obliczeń; a najprzód sigma i φ ( n , m + s ) {\displaystyle \varphi (n,m+s)} . [28]
p 15 = 47 ; ψ ( 100 000 47 ) = ψ ( 2127 ) = 319 ; {\displaystyle p_{15}=47;\psi \left({\frac {100\,000}{47}}\right)=\psi (2127)=319;}
φ ( 100 000 47 , 14 ) = φ ( 2127 ) , 14 ) = 319 − 13 = 306 {\displaystyle \,\,\,\,\,\varphi \left({\frac {100\,000}{47}},14\right)=\varphi \left(2127),14\right)=319-13=306}
p 16 = 53 ; ψ ( 100 000 53 ) = ψ ( 1886 ) = 289 ; {\displaystyle p_{16}=53;\psi \left({\frac {100\,000}{53}}\right)=\psi (1886)=289;}
φ ( 1886 , 15 ) = 289 − 14 = 275 {\displaystyle \varphi \left(1886,15\right)=289-14=275}
p 17 = 59 ; ψ ( 100 000 59 ) = ψ ( 1694 ) = 264 ; {\displaystyle p_{17}=59;\psi \left({\frac {100\,000}{59}}\right)=\psi (1694)=264;}
φ ( 1694 , 16 ) = 264 − 15 = 249 {\displaystyle \varphi \left(1694,16\right)=264-15=249}
p 18 = 61 ; ψ ( 100 000 61 ) = ψ ( 1639 ) = 259 ; {\displaystyle p_{18}=61;\psi \left({\frac {100\,000}{61}}\right)=\psi (1639)=259;}
φ ( 1639 , 17 ) = 259 − 16 = 243 {\displaystyle \varphi \left(1639,17\right)=259-16=243}
p 19 = 67 ; ψ ( 100 000 67 ) = ψ ( 1492 ) = 237 ; {\displaystyle p_{19}=67;\psi \left({\frac {100\,000}{67}}\right)=\psi (1492)=237;}
φ ( 1492 , 18 ) = 237 − 17 = 220 {\displaystyle \varphi \left(1492,18\right)=237-17=220}
p 20 = 71 ; ψ ( 100 000 71 ) = ψ ( 1408 ) = 222 ; {\displaystyle p_{20}=71;\psi \left({\frac {100\,000}{71}}\right)=\psi (1408)=222;}
φ ( 1408 , 19 ) = 222 − 18 = 204 {\displaystyle \varphi \left(1408,19\right)=222-18=204}
p 21 = 73 ; ψ ( 100 000 73 ) = ψ ( 1369 ) = 219 ; {\displaystyle p_{21}=73;\psi \left({\frac {100\,000}{73}}\right)=\psi (1369)=219;}
φ ( 1369 , 20 ) = 219 − 19 = 200 {\displaystyle \varphi \left(1369,20\right)=219-19=200}
p 22 = 79 ; ψ ( 100 000 79 ) = ψ ( 1268 ) = 205 ; {\displaystyle p_{22}=79;\psi \left({\frac {100\,000}{79}}\right)=\psi (1268)=205;}
φ ( 1268 , 21 ) = 205 − 20 = 185 {\displaystyle \varphi \left(1268,21\right)=205-20=185}
p 23 = 83 ; ψ ( 100 000 83 ) = ψ ( 1204 ) = 197 ; {\displaystyle p_{23}=83;\psi \left({\frac {100\,000}{83}}\right)=\psi (1204)=197;}
φ ( 1204 , 22 ) = 197 − 21 = 176 {\displaystyle \varphi \left(1204,22\right)=197-21=176}
p 24 = 89 ; ψ ( 100 000 89 ) = ψ ( 1123 ) = 188 ; {\displaystyle p_{24}=89;\psi \left({\frac {100\,000}{89}}\right)=\psi (1123)=188;}
φ ( 1123 , 23 ) = 188 − 22 = 166 {\displaystyle \varphi \left(1123,23\right)=188-22=166}
p 25 = 97 ; ψ ( 100 000 97 ) = ψ ( 1030 ) = 172 ; {\displaystyle p_{25}=97;\psi \left({\frac {100\,000}{97}}\right)=\psi (1030)=172;}
φ ( 1030 , 24 ) = 172 − 23 = 149 {\displaystyle \varphi \left(1030,24\right)=172-23=149}
p 26 = 101 ; ψ ( 100 000 101 ) = ψ ( 990 ) = 166 ; {\displaystyle p_{26}=101;\psi \left({\frac {100\,000}{101}}\right)=\psi (990)=166;}
φ ( 990 , 25 ) = 166 − 24 = 142 {\displaystyle \varphi \left(990,25\right)=166-24=142}
p 27 = 103 ; ψ ( 100 000 103 ) = ψ ( 970 ) = 163 ; {\displaystyle p_{27}=103;\psi \left({\frac {100\,000}{103}}\right)=\psi (970)=163;}
φ ( 970 , 26 ) = 163 − 25 = 138 {\displaystyle \varphi \left(970,26\right)=163-25=138}
p 28 = 107 ; ψ ( 100 000 107 ) = ψ ( 934 ) = 158 ; {\displaystyle p_{28}=107;\psi \left({\frac {100\,000}{107}}\right)=\psi (934)=158;}
φ ( 934 , 27 ) = 158 − 26 = 132 {\displaystyle \varphi \left(934,27\right)=158-26=132}
p 29 = 109 ; ψ ( 100 000 109 ) = ψ ( 917 ) = 156 ; {\displaystyle p_{29}=109;\psi \left({\frac {100\,000}{109}}\right)=\psi (917)=156;}
φ ( 917 , 28 ) = 156 − 27 = 129 {\displaystyle \varphi \left(917,28\right)=156-27=129}
p 30 = 113 ; ψ ( 100 000 113 ) = ψ ( 884 ) = 153 ; {\displaystyle p_{30}=113;\psi \left({\frac {100\,000}{113}}\right)=\psi (884)=153;}
φ ( 884 , 29 ) = 153 − 28 = 125 {\displaystyle \varphi \left(884,29\right)=153-28=125}
p 31 = 127 ; ψ ( 100 000 127 ) = ψ ( 787 ) = 138 ; {\displaystyle p_{31}=127;\psi \left({\frac {100\,000}{127}}\right)=\psi (787)=138;}
φ ( 787 , 30 ) = 138 − 29 = 109 {\displaystyle \varphi \left(787,30\right)=138-29=109}
p 32 = 131 ; ψ ( 100 000 131 ) = ψ ( 763 ) = 135 ; {\displaystyle p_{32}=131;\psi \left({\frac {100\,000}{131}}\right)=\psi (763)=135;}
φ ( 763 , 31 ) = 135 − 30 = 105 {\displaystyle \varphi \left(763,31\right)=135-30=105}
p 33 = 137 ; ψ ( 100 000 137 ) = ψ ( 729 ) = 129 ; {\displaystyle p_{33}=137;\psi \left({\frac {100\,000}{137}}\right)=\psi (729)=129;}
φ ( 729 , 32 ) = 129 − 31 = 98 {\displaystyle \varphi \left(729,32\right)=129-31=\,98}
p 34 = 139 ; ψ ( 100 000 139 ) = ψ ( 719 ) = 128 ; {\displaystyle p_{34}=139;\psi \left({\frac {100\,000}{139}}\right)=\psi (719)=128;}
φ ( 719 , 33 ) = 128 − 32 = 96 {\displaystyle \varphi \left(719,33\right)=128-32=\,96}
p 35 = 149 ; ψ ( 100 000 149 ) = ψ ( 671 ) = 121 ; {\displaystyle p_{35}=149;\psi \left({\frac {100\,000}{149}}\right)=\psi (671)=121;}
φ ( 671 , 34 ) = 121 − 33 = 88 {\displaystyle \varphi \left(671,34\right)=121-33=\,88}
p 36 = 151 ; ψ ( 100 000 151 ) = ψ ( 662 ) = 121 ; {\displaystyle p_{36}=151;\psi \left({\frac {100\,000}{151}}\right)=\psi (662)=121;}
φ ( 662 , 35 ) = 121 − 34 = 87 {\displaystyle \varphi \left(662,35\right)=121-34=\,87}
p 37 = 157 ; ψ ( 100 000 157 ) = ψ ( 636 ) = 115 ; {\displaystyle p_{37}=157;\psi \left({\frac {100\,000}{157}}\right)=\psi (636)=115;}
φ ( 636 , 36 ) = 115 − 35 = 80 {\displaystyle \varphi \left(636,36\right)=115-35=\,80}
p 38 = 163 ; ψ ( 100 000 163 ) = ψ ( 613 ) = 112 ; {\displaystyle p_{38}=163;\psi \left({\frac {100\,000}{163}}\right)=\psi (613)=112;}
φ ( 613 , 37 ) = 112 − 36 = 76 {\displaystyle \varphi \left(613,37\right)=112-36=\,76}
p 39 = 167 ; ψ ( 100 000 167 ) = ψ ( 598 ) = 108 ; {\displaystyle p_{39}=167;\psi \left({\frac {100\,000}{167}}\right)=\psi (598)=108;}
φ ( 598 , 38 ) = 108 − 37 = 71 {\displaystyle \varphi \left(598,38\right)=108-37=\,71}
p 40 = 173 ; ψ ( 100 000 173 ) = ψ ( 578 ) = 106 ; {\displaystyle p_{40}=173;\psi \left({\frac {100\,000}{173}}\right)=\psi (578)=106;}
φ ( 578 , 39 ) = 106 − 38 = 68 {\displaystyle \varphi \left(578,39\right)=106-38=\,68}
p 41 = 179 ; ψ ( 100 000 179 ) = ψ ( 558 ) = 102 ; {\displaystyle p_{41}=179;\psi \left({\frac {100\,000}{179}}\right)=\psi (558)=102;}
φ ( 558 , 50 ) = 102 − 39 = 63 {\displaystyle \varphi \left(558,50\right)=102-39=\,63}
p 42 = 181 ; ψ ( 100 000 181 ) = ψ ( 552 ) = 101 ; {\displaystyle p_{42}=181;\psi \left({\frac {100\,000}{181}}\right)=\psi (552)=101;}
φ ( 552 , 51 ) = 101 − 40 = 61 {\displaystyle \varphi \left(552,51\right)=101-40=\,61}
p 43 = 191 ; ψ ( 100 000 191 ) = ψ ( 523 ) = 99 ; {\displaystyle p_{43}=191;\psi \left({\frac {100\,000}{191}}\right)=\psi (523)=\,99;}
φ ( 523 , 52 ) = 99 − 41 = 58 {\displaystyle \varphi \left(523,52\right)=99\,-41=\,58}
p 44 = 193 ; ψ ( 100 000 193 ) = ψ ( 518 ) = 97 ; {\displaystyle p_{44}=193;\psi \left({\frac {100\,000}{193}}\right)=\psi (518)=\,97;}
φ ( 518 , 53 ) = 97 − 42 = 55 {\displaystyle \varphi \left(518,53\right)=97\,-42=\,55}
p 45 = 197 ; ψ ( 100 000 197 ) = ψ ( 507 ) = 96 ; {\displaystyle p_{45}=197;\psi \left({\frac {100\,000}{197}}\right)=\psi (507)=\,96;}
φ ( 507 , 54 ) = 96 − 43 = 53 {\displaystyle \varphi \left(507,54\right)=96\,-43=\,53}
p 46 = 199 ; ψ ( 100 000 199 ) = ψ ( 502 ) = 95 ; {\displaystyle p_{46}=199;\psi \left({\frac {100\,000}{199}}\right)=\psi (502)=\,95;}
φ ( 502 , 55 ) = 95 − 44 = 51 {\displaystyle \varphi \left(502,55\right)=95\,-44=\,51}
p 47 = 211 ; ψ ( 100 000 211 ) = ψ ( 473 ) = 91 ; {\displaystyle p_{47}=211;\psi \left({\frac {100\,000}{211}}\right)=\psi (473)=\,91;}
φ ( 473 , 46 ) = 91 − 45 = 46 {\displaystyle \varphi \left(473,46\right)=91\,-45=\,46}
p 48 = 223 ; ψ ( 100 000 223 ) = ψ ( 448 ) = 86 ; {\displaystyle p_{48}=223;\psi \left({\frac {100\,000}{223}}\right)=\psi (448)=\,86;}
φ ( 448 , 47 ) = 86 − 46 = 40 {\displaystyle \varphi \left(448,47\right)=86\,-46=\,40}
p 49 = 227 ; ψ ( 100 000 227 ) = ψ ( 440 ) = 85 ; {\displaystyle p_{49}=227;\psi \left({\frac {100\,000}{227}}\right)=\psi (440)=\,85;}
φ ( 440 , 48 ) = 85 − 47 = 38 {\displaystyle \varphi \left(440,48\right)=85\,-47=\,38}
p 50 = 229 ; ψ ( 100 000 229 ) = ψ ( 436 ) = 84 ; {\displaystyle p_{50}=229;\psi \left({\frac {100\,000}{229}}\right)=\psi (436)=\,84;}
φ ( 436 , 49 ) = 84 − 48 = 36 {\displaystyle \varphi \left(436,49\right)=84\,-48=\,36}
p 51 = 233 ; ψ ( 100 000 233 ) = ψ ( 429 ) = 82 ; {\displaystyle p_{51}=233;\psi \left({\frac {100\,000}{233}}\right)=\psi (429)=\,82;}
φ ( 429 , 50 ) = 82 − 49 = 33 {\displaystyle \varphi \left(429,50\right)=82\,-49=\,33}
p 51 = 233 ; ψ ( 100 000 233 ) = ψ ( 418 ) = 80 ; {\displaystyle p_{51}=233;\psi \left({\frac {100\,000}{233}}\right)=\psi (418)=\,80;}
φ ( 418 , 51 ) = 80 − 50 = 30 {\displaystyle \varphi \left(418,51\right)=80\,-50=\,30}
p 52 = 239 ; ψ ( 100 000 239 ) = ψ ( 418 ) = 80 ; {\displaystyle p_{52}=239;\psi \left({\frac {100\,000}{239}}\right)=\psi (418)=\,80;}
p 53 = 241 ; ψ ( 100 000 241 ) = ψ ( 414 ) = 80 ; {\displaystyle p_{53}=241;\psi \left({\frac {100\,000}{241}}\right)=\psi (414)=\,80;}
φ ( 414 , 52 ) = 80 − 51 = 29 {\displaystyle \varphi \left(414,52\right)=80\,-51=\,29}
p 54 = 251 ; ψ ( 100 000 251 ) = ψ ( 398 ) = 78 ; {\displaystyle p_{54}=251;\psi \left({\frac {100\,000}{251}}\right)=\psi (398)=\,78;}
φ ( 398 , 53 ) = 78 − 52 = 26 {\displaystyle \varphi \left(398,53\right)=78\,-52=\,26}
p 55 = 257 ; ψ ( 100 000 257 ) = ψ ( 389 ) = 77 ; {\displaystyle p_{55}=257;\psi \left({\frac {100\,000}{257}}\right)=\psi (389)=\,77;}
φ ( 389 , 54 ) = 77 − 53 = 24 {\displaystyle \varphi \left(389,54\right)=77\,-53=\,24}
p 56 = 263 ; ψ ( 100 000 263 ) = ψ ( 380 ) = 75 ; {\displaystyle p_{56}=263;\psi \left({\frac {100\,000}{263}}\right)=\psi (380)=\,75;}
φ ( 380 , 55 ) = 75 − 54 = 21 {\displaystyle \varphi \left(380,55\right)=75\,-54=\,21}
p 57 = 269 ; ψ ( 100 000 269 ) = ψ ( 371 ) = 73 ; {\displaystyle p_{57}=269;\psi \left({\frac {100\,000}{269}}\right)=\psi (371)=\,73;}
φ ( 371 , 56 ) = 73 − 55 = 18 {\displaystyle \varphi \left(371,56\right)=73\,-55=\,18}
p 58 = 271 ; ψ ( 100 000 271 ) = ψ ( 369 ) = 73 ; {\displaystyle p_{58}=271;\psi \left({\frac {100\,000}{271}}\right)=\psi (369)=\,73;}
φ ( 369 , 57 ) = 73 − 56 = 17 {\displaystyle \varphi \left(369,57\right)=73\,-56=\,17}
p 59 = 277 ; ψ ( 100 000 277 ) = ψ ( 361 ) = 72 ; {\displaystyle p_{59}=277;\psi \left({\frac {100\,000}{277}}\right)=\psi (361)=\,72;}
φ ( 361 , 58 ) = 72 − 57 = 15 {\displaystyle \varphi \left(361,58\right)=72\,-57=\,15}
p 60 = 281 ; ψ ( 100 000 281 ) = ψ ( 355 ) = 71 ; {\displaystyle p_{60}=281;\psi \left({\frac {100\,000}{281}}\right)=\psi (355)=\,71;}
φ ( 355 , 59 ) = 71 − 58 = 13 {\displaystyle \varphi \left(355,59\right)=71\,-58=\,13}
p 61 = 283 ; ψ ( 100 000 283 ) = ψ ( 353 ) = 71 ; {\displaystyle p_{61}=283;\psi \left({\frac {100\,000}{283}}\right)=\psi (353)=\,71;}
φ ( 353 , 60 ) = 71 − 59 = 12 {\displaystyle \varphi \left(353,60\right)=71\,-59=\,12}
p 62 = 293 ; ψ ( 100 000 293 ) = ψ ( 341 ) = 68 ; {\displaystyle p_{62}=293;\psi \left({\frac {100\,000}{293}}\right)=\psi (341)=68;}
ψ ( 341 , 61 ) = 68 − 60 = 8 {\displaystyle \psi \left(341,61\right)=68\,-60=\,\,8}
p 63 = 307 ; ψ ( 100 000 307 ) = ψ ( 325 ) = 66 ; {\displaystyle p_{63}=307;\psi \left({\frac {100\,000}{307}}\right)=\psi (325)=66;}
ψ ( 325 , 62 ) = 66 − 61 = 5 {\displaystyle \psi \left(325,62\right)=66\,-61=\,\,5}
p 64 = 311 ; ψ ( 100 000 311 ) = ψ ( 321 ) = 66 ; {\displaystyle p_{64}=311;\psi \left({\frac {100\,000}{311}}\right)=\psi (321)=66;}
ψ ( 321 , 63 ) = 66 − 62 = 4 {\displaystyle \psi \left(321,63\right)=66\,-62=\,\,4}
p 65 = 313 ; ψ ( 100 000 313 ) = ψ ( 319 ) = 66 ; {\displaystyle p_{65}=313;\psi \left({\frac {100\,000}{313}}\right)=\psi (319)=66;} 6614 ¯ {\displaystyle {\overline {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\mathbf {6614} }}}
ψ ( 319 , 64 ) = 66 − 63 = 3 {\displaystyle \psi \left(319,64\right)=66\,-63=\,\,3} 4676 ¯ {\displaystyle {\overline {\,\,\,\,\,\,\,\,\mathbf {4676} \,\,}}}
Funkcya zaś φ ( m ) {\displaystyle \varphi (m)} bez sigmy i bez jej restytucyi daje liczbę liczb pierwszych, do której należy dodać usunięte przez nią [funkcyą φ ( m ) {\displaystyle \varphi (m)} ] liczb pierwszych 65, a odjąć 1; czyli ψ ( 100 000 ) = φ ( 100 000 , 14 ) − φ ( 100 000 , 65 ) + 65 − 1 = 14204 − 4676 − 1 + 65 = 14269 − 4677 = 9592 . {\displaystyle \psi (100\,000)=\varphi (100\,000,14)-\varphi (100\,000,65)+65-1=14204-4676-1+65=14269-4677=\mathbf {9592} .} Stąd wnioskuję, że wzór ψ ( n ) = φ ( n , ψ n ) + ψ n − 1 {\displaystyle \psi (n)=\varphi (n,\psi {\sqrt {n}})+\psi {\sqrt {n}}-1} jest prostszy i naturalniejszy od Meisselowskiego i nie trudniejszy do obliczenia.